Spaces:
Runtime error
Runtime error
import spaces | |
import gradio as gr | |
import torch | |
from huggingface_hub import snapshot_download | |
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder | |
from xora.models.transformers.transformer3d import Transformer3DModel | |
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier | |
from xora.schedulers.rf import RectifiedFlowScheduler | |
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline | |
from transformers import T5EncoderModel, T5Tokenizer | |
from xora.utils.conditioning_method import ConditioningMethod | |
from pathlib import Path | |
import safetensors.torch | |
import json | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
import tempfile | |
import os | |
# Load Hugging Face token if needed | |
hf_token = os.getenv("HF_TOKEN") | |
# Set model download directory within Hugging Face Spaces | |
model_path = "asset" | |
if not os.path.exists(model_path): | |
snapshot_download("Lightricks/Xora", local_dir=model_path, repo_type='model', token=hf_token) | |
# Global variables to load components | |
vae_dir = Path(model_path) / 'vae' | |
unet_dir = Path(model_path) / 'unet' | |
scheduler_dir = Path(model_path) / 'scheduler' | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def load_vae(vae_dir): | |
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors" | |
vae_config_path = vae_dir / "config.json" | |
with open(vae_config_path, 'r') as f: | |
vae_config = json.load(f) | |
vae = CausalVideoAutoencoder.from_config(vae_config) | |
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) | |
vae.load_state_dict(vae_state_dict) | |
return vae.cuda().to(torch.bfloat16) | |
def load_unet(unet_dir): | |
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors" | |
unet_config_path = unet_dir / "config.json" | |
transformer_config = Transformer3DModel.load_config(unet_config_path) | |
transformer = Transformer3DModel.from_config(transformer_config) | |
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) | |
transformer.load_state_dict(unet_state_dict, strict=True) | |
return transformer.to(device) | |
def load_scheduler(scheduler_dir): | |
scheduler_config_path = scheduler_dir / "scheduler_config.json" | |
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) | |
return RectifiedFlowScheduler.from_config(scheduler_config) | |
# Helper function for image processing | |
def center_crop_and_resize(frame, target_height, target_width): | |
h, w, _ = frame.shape | |
aspect_ratio_target = target_width / target_height | |
aspect_ratio_frame = w / h | |
if aspect_ratio_frame > aspect_ratio_target: | |
new_width = int(h * aspect_ratio_target) | |
x_start = (w - new_width) // 2 | |
frame_cropped = frame[:, x_start:x_start + new_width] | |
else: | |
new_height = int(w / aspect_ratio_target) | |
y_start = (h - new_height) // 2 | |
frame_cropped = frame[y_start:y_start + new_height, :] | |
frame_resized = cv2.resize(frame_cropped, (target_width, target_height)) | |
return frame_resized | |
def load_image_to_tensor_with_resize(image_path, target_height=512, target_width=768): | |
image = Image.open(image_path).convert("RGB") | |
image_np = np.array(image) | |
frame_resized = center_crop_and_resize(image_np, target_height, target_width) | |
frame_tensor = torch.tensor(frame_resized).permute(2, 0, 1).float() | |
frame_tensor = (frame_tensor / 127.5) - 1.0 | |
return frame_tensor.unsqueeze(0).unsqueeze(2) | |
# Preset options for resolution and frame configuration | |
preset_options = [ | |
{"label": "704x1216, 41 frames", "height": 704, "width": 1216, "num_frames": 41}, | |
{"label": "704x1088, 49 frames", "height": 704, "width": 1088, "num_frames": 49}, | |
{"label": "640x1056, 57 frames", "height": 640, "width": 1056, "num_frames": 57}, | |
{"label": "608x992, 65 frames", "height": 608, "width": 992, "num_frames": 65}, | |
{"label": "608x896, 73 frames", "height": 608, "width": 896, "num_frames": 73}, | |
{"label": "544x896, 81 frames", "height": 544, "width": 896, "num_frames": 81}, | |
{"label": "544x832, 89 frames", "height": 544, "width": 832, "num_frames": 89}, | |
{"label": "512x800, 97 frames", "height": 512, "width": 800, "num_frames": 97}, | |
{"label": "512x768, 97 frames", "height": 512, "width": 768, "num_frames": 97}, | |
{"label": "480x800, 105 frames", "height": 480, "width": 800, "num_frames": 105}, | |
{"label": "480x736, 113 frames", "height": 480, "width": 736, "num_frames": 113}, | |
{"label": "480x704, 121 frames", "height": 480, "width": 704, "num_frames": 121}, | |
{"label": "448x704, 129 frames", "height": 448, "width": 704, "num_frames": 129}, | |
{"label": "448x672, 137 frames", "height": 448, "width": 672, "num_frames": 137}, | |
{"label": "416x640, 153 frames", "height": 416, "width": 640, "num_frames": 153}, | |
{"label": "384x672, 161 frames", "height": 384, "width": 672, "num_frames": 161}, | |
{"label": "384x640, 169 frames", "height": 384, "width": 640, "num_frames": 169}, | |
{"label": "384x608, 177 frames", "height": 384, "width": 608, "num_frames": 177}, | |
{"label": "384x576, 185 frames", "height": 384, "width": 576, "num_frames": 185}, | |
{"label": "352x608, 193 frames", "height": 352, "width": 608, "num_frames": 193}, | |
{"label": "352x576, 201 frames", "height": 352, "width": 576, "num_frames": 201}, | |
{"label": "352x544, 209 frames", "height": 352, "width": 544, "num_frames": 209}, | |
{"label": "352x512, 225 frames", "height": 352, "width": 512, "num_frames": 225}, | |
{"label": "352x512, 233 frames", "height": 352, "width": 512, "num_frames": 233}, | |
{"label": "320x544, 241 frames", "height": 320, "width": 544, "num_frames": 241}, | |
{"label": "320x512, 249 frames", "height": 320, "width": 512, "num_frames": 249}, | |
{"label": "320x512, 257 frames", "height": 320, "width": 512, "num_frames": 257}, | |
{"label": "Custom", "height": None, "width": None, "num_frames": None} | |
] | |
# Function to toggle visibility of sliders based on preset selection | |
def preset_changed(preset): | |
if preset != "Custom": | |
selected = next(item for item in preset_options if item["label"] == preset) | |
return ( | |
selected["height"], | |
selected["width"], | |
selected["num_frames"], | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False) | |
) | |
else: | |
return None, None, None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) | |
# Load models | |
vae = load_vae(vae_dir) | |
unet = load_unet(unet_dir) | |
scheduler = load_scheduler(scheduler_dir) | |
patchifier = SymmetricPatchifier(patch_size=1) | |
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(device) | |
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer") | |
pipeline = XoraVideoPipeline( | |
transformer=unet, | |
patchifier=patchifier, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
vae=vae, | |
).to(device) | |
# Modified function to include validation with gr.Error | |
def generate_video(image_path=None, prompt="", negative_prompt="", | |
seed=171198, num_inference_steps=40, num_images_per_prompt=1, | |
guidance_scale=3, height=512, width=768, num_frames=121, frame_rate=25, progress=gr.Progress()): | |
# Check prompt length and raise an error if it's too short | |
if len(prompt.strip()) < 50: | |
raise gr.Error("Prompt must be at least 50 characters long. Please provide more details for the best results.", duration=5) | |
if image_path: | |
media_items = load_image_to_tensor_with_resize(image_path, height, width).to(device) | |
else: | |
raise ValueError("Image path must be provided.") | |
sample = { | |
"prompt": prompt, | |
'prompt_attention_mask': None, | |
'negative_prompt': negative_prompt, | |
'negative_prompt_attention_mask': None, | |
'media_items': media_items, | |
} | |
generator = torch.Generator(device="cpu").manual_seed(seed) | |
def gradio_progress_callback(self, step, timestep, kwargs): | |
progress((step + 1) / num_inference_steps) | |
images = pipeline( | |
num_inference_steps=num_inference_steps, | |
num_images_per_prompt=num_images_per_prompt, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
output_type="pt", | |
height=height, | |
width=width, | |
num_frames=num_frames, | |
frame_rate=frame_rate, | |
**sample, | |
is_video=True, | |
vae_per_channel_normalize=True, | |
conditioning_method=ConditioningMethod.FIRST_FRAME, | |
mixed_precision=True, | |
callback_on_step_end=gradio_progress_callback | |
).images | |
output_path = tempfile.mktemp(suffix=".mp4") | |
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() | |
video_np = (video_np * 255).astype(np.uint8) | |
height, width = video_np.shape[1:3] | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*'mp4v'), frame_rate, (width, height)) | |
for frame in video_np[..., ::-1]: | |
out.write(frame) | |
out.release() | |
return output_path | |
# Define the Gradio interface with presets | |
with gr.Blocks() as iface: | |
gr.Markdown("# Video Generation with Xora") | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="Image Input") | |
prompt = gr.Textbox(label="Prompt", value="A man riding a motorcycle down a winding road, surrounded by lush, green scenery and distant mountains. The sky is clear with a few wispy clouds, and the sunlight glistens on the motorcycle as it speeds along. The rider is dressed in a black leather jacket and helmet, leaning slightly forward as the wind rustles through nearby trees. The wheels kick up dust, creating a slight trail behind the motorcycle, adding a sense of speed and excitement to the scene.") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion...") | |
# Preset dropdown for resolution and frame settings | |
preset_dropdown = gr.Dropdown( | |
choices=[p["label"] for p in preset_options], | |
value="704x1216, 41 frames", | |
label="Resolution Preset" | |
) | |
# Advanced options section | |
with gr.Accordion("Advanced Options", open=False): | |
seed = gr.Slider(label="Seed", minimum=0, maximum=1000000, step=1, value=171198) | |
inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=100, step=1, value=40) | |
images_per_prompt = gr.Slider(label="Images per Prompt", minimum=1, maximum=10, step=1, value=1) | |
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=20.0, step=0.1, value=3.0) | |
# Sliders to appear at the end of the advanced settings | |
height_slider = gr.Slider(label="Height", minimum=256, maximum=1024, step=64, value=704, visible=False) | |
width_slider = gr.Slider(label="Width", minimum=256, maximum=1024, step=64, value=1216, visible=False) | |
num_frames_slider = gr.Slider(label="Number of Frames", minimum=1, maximum=200, step=1, value=41, | |
visible=False) | |
frame_rate = gr.Slider(label="Frame Rate", minimum=1, maximum=60, step=1, value=25, visible=False) | |
generate_button = gr.Button("Generate Video") | |
with gr.Column(): | |
output_video = gr.Video(label="Generated Video") | |
# Link dropdown change to update sliders visibility and values | |
preset_dropdown.change( | |
fn=preset_changed, | |
inputs=[preset_dropdown], | |
outputs=[height_slider, width_slider, num_frames_slider, height_slider, width_slider, frame_rate] | |
) | |
generate_button.click( | |
fn=generate_video, | |
inputs=[image_input, prompt, negative_prompt, seed, inference_steps, images_per_prompt, guidance_scale, | |
height_slider, width_slider, num_frames_slider, frame_rate], | |
outputs=output_video | |
) | |
iface.launch(share=True) | |