Spaces:
Runtime error
Runtime error
import inspect | |
from importlib import import_module | |
from typing import Any, Dict, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
from diffusers.models.activations import GEGLU, GELU, ApproximateGELU | |
from diffusers.models.attention import _chunked_feed_forward | |
from diffusers.models.attention_processor import ( | |
LoRAAttnAddedKVProcessor, | |
LoRAAttnProcessor, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
SpatialNorm, | |
) | |
from diffusers.models.lora import LoRACompatibleLinear | |
from diffusers.models.normalization import RMSNorm | |
from diffusers.utils import deprecate, logging | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import rearrange | |
from torch import nn | |
try: | |
from torch_xla.experimental.custom_kernel import flash_attention | |
except ImportError: | |
# workaround for automatic tests. Currently this function is manually patched | |
# to the torch_xla lib on setup of container | |
pass | |
# code adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py | |
logger = logging.get_logger(__name__) | |
class BasicTransformerBlock(nn.Module): | |
r""" | |
A basic Transformer block. | |
Parameters: | |
dim (`int`): The number of channels in the input and output. | |
num_attention_heads (`int`): The number of heads to use for multi-head attention. | |
attention_head_dim (`int`): The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
num_embeds_ada_norm (: | |
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. | |
attention_bias (: | |
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. | |
only_cross_attention (`bool`, *optional*): | |
Whether to use only cross-attention layers. In this case two cross attention layers are used. | |
double_self_attention (`bool`, *optional*): | |
Whether to use two self-attention layers. In this case no cross attention layers are used. | |
upcast_attention (`bool`, *optional*): | |
Whether to upcast the attention computation to float32. This is useful for mixed precision training. | |
norm_elementwise_affine (`bool`, *optional*, defaults to `True`): | |
Whether to use learnable elementwise affine parameters for normalization. | |
qk_norm (`str`, *optional*, defaults to None): | |
Set to 'layer_norm' or `rms_norm` to perform query and key normalization. | |
adaptive_norm (`str`, *optional*, defaults to `"single_scale_shift"`): | |
The type of adaptive norm to use. Can be `"single_scale_shift"`, `"single_scale"` or "none". | |
standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): | |
The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`. | |
final_dropout (`bool` *optional*, defaults to False): | |
Whether to apply a final dropout after the last feed-forward layer. | |
attention_type (`str`, *optional*, defaults to `"default"`): | |
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`. | |
positional_embeddings (`str`, *optional*, defaults to `None`): | |
The type of positional embeddings to apply to. | |
num_positional_embeddings (`int`, *optional*, defaults to `None`): | |
The maximum number of positional embeddings to apply. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
dropout=0.0, | |
cross_attention_dim: Optional[int] = None, | |
activation_fn: str = "geglu", | |
num_embeds_ada_norm: Optional[int] = None, # pylint: disable=unused-argument | |
attention_bias: bool = False, | |
only_cross_attention: bool = False, | |
double_self_attention: bool = False, | |
upcast_attention: bool = False, | |
norm_elementwise_affine: bool = True, | |
adaptive_norm: str = "single_scale_shift", # 'single_scale_shift', 'single_scale' or 'none' | |
standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm' | |
norm_eps: float = 1e-5, | |
qk_norm: Optional[str] = None, | |
final_dropout: bool = False, | |
attention_type: str = "default", # pylint: disable=unused-argument | |
ff_inner_dim: Optional[int] = None, | |
ff_bias: bool = True, | |
attention_out_bias: bool = True, | |
use_tpu_flash_attention: bool = False, | |
use_rope: bool = False, | |
): | |
super().__init__() | |
self.only_cross_attention = only_cross_attention | |
self.use_tpu_flash_attention = use_tpu_flash_attention | |
self.adaptive_norm = adaptive_norm | |
assert standardization_norm in ["layer_norm", "rms_norm"] | |
assert adaptive_norm in ["single_scale_shift", "single_scale", "none"] | |
make_norm_layer = ( | |
nn.LayerNorm if standardization_norm == "layer_norm" else RMSNorm | |
) | |
# Define 3 blocks. Each block has its own normalization layer. | |
# 1. Self-Attn | |
self.norm1 = make_norm_layer( | |
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps | |
) | |
self.attn1 = Attention( | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
cross_attention_dim=cross_attention_dim if only_cross_attention else None, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
use_tpu_flash_attention=use_tpu_flash_attention, | |
qk_norm=qk_norm, | |
use_rope=use_rope, | |
) | |
# 2. Cross-Attn | |
if cross_attention_dim is not None or double_self_attention: | |
self.attn2 = Attention( | |
query_dim=dim, | |
cross_attention_dim=( | |
cross_attention_dim if not double_self_attention else None | |
), | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
out_bias=attention_out_bias, | |
use_tpu_flash_attention=use_tpu_flash_attention, | |
qk_norm=qk_norm, | |
use_rope=use_rope, | |
) # is self-attn if encoder_hidden_states is none | |
if adaptive_norm == "none": | |
self.attn2_norm = make_norm_layer( | |
dim, norm_eps, norm_elementwise_affine | |
) | |
else: | |
self.attn2 = None | |
self.attn2_norm = None | |
self.norm2 = make_norm_layer(dim, norm_eps, norm_elementwise_affine) | |
# 3. Feed-forward | |
self.ff = FeedForward( | |
dim, | |
dropout=dropout, | |
activation_fn=activation_fn, | |
final_dropout=final_dropout, | |
inner_dim=ff_inner_dim, | |
bias=ff_bias, | |
) | |
# 5. Scale-shift for PixArt-Alpha. | |
if adaptive_norm != "none": | |
num_ada_params = 4 if adaptive_norm == "single_scale" else 6 | |
self.scale_shift_table = nn.Parameter( | |
torch.randn(num_ada_params, dim) / dim**0.5 | |
) | |
# let chunk size default to None | |
self._chunk_size = None | |
self._chunk_dim = 0 | |
def set_use_tpu_flash_attention(self, device): | |
r""" | |
Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU | |
attention kernel. | |
""" | |
if device == "xla": | |
self.use_tpu_flash_attention = True | |
self.attn1.set_use_tpu_flash_attention(device) | |
self.attn2.set_use_tpu_flash_attention(device) | |
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0): | |
# Sets chunk feed-forward | |
self._chunk_size = chunk_size | |
self._chunk_dim = dim | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
encoder_attention_mask: Optional[torch.FloatTensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.FloatTensor: | |
if cross_attention_kwargs is not None: | |
if cross_attention_kwargs.get("scale", None) is not None: | |
logger.warning( | |
"Passing `scale` to `cross_attention_kwargs` is depcrecated. `scale` will be ignored." | |
) | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
norm_hidden_states = self.norm1(hidden_states) | |
# Apply ada_norm_single | |
if self.adaptive_norm in ["single_scale_shift", "single_scale"]: | |
assert timestep.ndim == 3 # [batch, 1 or num_tokens, embedding_dim] | |
num_ada_params = self.scale_shift_table.shape[0] | |
ada_values = self.scale_shift_table[None, None] + timestep.reshape( | |
batch_size, timestep.shape[1], num_ada_params, -1 | |
) | |
if self.adaptive_norm == "single_scale_shift": | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
ada_values.unbind(dim=2) | |
) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
else: | |
scale_msa, gate_msa, scale_mlp, gate_mlp = ada_values.unbind(dim=2) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) | |
elif self.adaptive_norm == "none": | |
scale_msa, gate_msa, scale_mlp, gate_mlp = None, None, None, None | |
else: | |
raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}") | |
norm_hidden_states = norm_hidden_states.squeeze( | |
1 | |
) # TODO: Check if this is needed | |
# 1. Prepare GLIGEN inputs | |
cross_attention_kwargs = ( | |
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
freqs_cis=freqs_cis, | |
encoder_hidden_states=( | |
encoder_hidden_states if self.only_cross_attention else None | |
), | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if gate_msa is not None: | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.adaptive_norm == "none": | |
attn_input = self.attn2_norm(hidden_states) | |
else: | |
attn_input = hidden_states | |
attn_output = self.attn2( | |
attn_input, | |
freqs_cis=freqs_cis, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
norm_hidden_states = self.norm2(hidden_states) | |
if self.adaptive_norm == "single_scale_shift": | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
elif self.adaptive_norm == "single_scale": | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) | |
elif self.adaptive_norm == "none": | |
pass | |
else: | |
raise ValueError(f"Unknown adaptive norm type: {self.adaptive_norm}") | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward( | |
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size | |
) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if gate_mlp is not None: | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class Attention(nn.Module): | |
r""" | |
A cross attention layer. | |
Parameters: | |
query_dim (`int`): | |
The number of channels in the query. | |
cross_attention_dim (`int`, *optional*): | |
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. | |
heads (`int`, *optional*, defaults to 8): | |
The number of heads to use for multi-head attention. | |
dim_head (`int`, *optional*, defaults to 64): | |
The number of channels in each head. | |
dropout (`float`, *optional*, defaults to 0.0): | |
The dropout probability to use. | |
bias (`bool`, *optional*, defaults to False): | |
Set to `True` for the query, key, and value linear layers to contain a bias parameter. | |
upcast_attention (`bool`, *optional*, defaults to False): | |
Set to `True` to upcast the attention computation to `float32`. | |
upcast_softmax (`bool`, *optional*, defaults to False): | |
Set to `True` to upcast the softmax computation to `float32`. | |
cross_attention_norm (`str`, *optional*, defaults to `None`): | |
The type of normalization to use for the cross attention. Can be `None`, `layer_norm`, or `group_norm`. | |
cross_attention_norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups to use for the group norm in the cross attention. | |
added_kv_proj_dim (`int`, *optional*, defaults to `None`): | |
The number of channels to use for the added key and value projections. If `None`, no projection is used. | |
norm_num_groups (`int`, *optional*, defaults to `None`): | |
The number of groups to use for the group norm in the attention. | |
spatial_norm_dim (`int`, *optional*, defaults to `None`): | |
The number of channels to use for the spatial normalization. | |
out_bias (`bool`, *optional*, defaults to `True`): | |
Set to `True` to use a bias in the output linear layer. | |
scale_qk (`bool`, *optional*, defaults to `True`): | |
Set to `True` to scale the query and key by `1 / sqrt(dim_head)`. | |
qk_norm (`str`, *optional*, defaults to None): | |
Set to 'layer_norm' or `rms_norm` to perform query and key normalization. | |
only_cross_attention (`bool`, *optional*, defaults to `False`): | |
Set to `True` to only use cross attention and not added_kv_proj_dim. Can only be set to `True` if | |
`added_kv_proj_dim` is not `None`. | |
eps (`float`, *optional*, defaults to 1e-5): | |
An additional value added to the denominator in group normalization that is used for numerical stability. | |
rescale_output_factor (`float`, *optional*, defaults to 1.0): | |
A factor to rescale the output by dividing it with this value. | |
residual_connection (`bool`, *optional*, defaults to `False`): | |
Set to `True` to add the residual connection to the output. | |
_from_deprecated_attn_block (`bool`, *optional*, defaults to `False`): | |
Set to `True` if the attention block is loaded from a deprecated state dict. | |
processor (`AttnProcessor`, *optional*, defaults to `None`): | |
The attention processor to use. If `None`, defaults to `AttnProcessor2_0` if `torch 2.x` is used and | |
`AttnProcessor` otherwise. | |
""" | |
def __init__( | |
self, | |
query_dim: int, | |
cross_attention_dim: Optional[int] = None, | |
heads: int = 8, | |
dim_head: int = 64, | |
dropout: float = 0.0, | |
bias: bool = False, | |
upcast_attention: bool = False, | |
upcast_softmax: bool = False, | |
cross_attention_norm: Optional[str] = None, | |
cross_attention_norm_num_groups: int = 32, | |
added_kv_proj_dim: Optional[int] = None, | |
norm_num_groups: Optional[int] = None, | |
spatial_norm_dim: Optional[int] = None, | |
out_bias: bool = True, | |
scale_qk: bool = True, | |
qk_norm: Optional[str] = None, | |
only_cross_attention: bool = False, | |
eps: float = 1e-5, | |
rescale_output_factor: float = 1.0, | |
residual_connection: bool = False, | |
_from_deprecated_attn_block: bool = False, | |
processor: Optional["AttnProcessor"] = None, | |
out_dim: int = None, | |
use_tpu_flash_attention: bool = False, | |
use_rope: bool = False, | |
): | |
super().__init__() | |
self.inner_dim = out_dim if out_dim is not None else dim_head * heads | |
self.query_dim = query_dim | |
self.use_bias = bias | |
self.is_cross_attention = cross_attention_dim is not None | |
self.cross_attention_dim = ( | |
cross_attention_dim if cross_attention_dim is not None else query_dim | |
) | |
self.upcast_attention = upcast_attention | |
self.upcast_softmax = upcast_softmax | |
self.rescale_output_factor = rescale_output_factor | |
self.residual_connection = residual_connection | |
self.dropout = dropout | |
self.fused_projections = False | |
self.out_dim = out_dim if out_dim is not None else query_dim | |
self.use_tpu_flash_attention = use_tpu_flash_attention | |
self.use_rope = use_rope | |
# we make use of this private variable to know whether this class is loaded | |
# with an deprecated state dict so that we can convert it on the fly | |
self._from_deprecated_attn_block = _from_deprecated_attn_block | |
self.scale_qk = scale_qk | |
self.scale = dim_head**-0.5 if self.scale_qk else 1.0 | |
if qk_norm is None: | |
self.q_norm = nn.Identity() | |
self.k_norm = nn.Identity() | |
elif qk_norm == "rms_norm": | |
self.q_norm = RMSNorm(dim_head * heads, eps=1e-5) | |
self.k_norm = RMSNorm(dim_head * heads, eps=1e-5) | |
elif qk_norm == "layer_norm": | |
self.q_norm = nn.LayerNorm(dim_head * heads, eps=1e-5) | |
self.k_norm = nn.LayerNorm(dim_head * heads, eps=1e-5) | |
else: | |
raise ValueError(f"Unsupported qk_norm method: {qk_norm}") | |
self.heads = out_dim // dim_head if out_dim is not None else heads | |
# for slice_size > 0 the attention score computation | |
# is split across the batch axis to save memory | |
# You can set slice_size with `set_attention_slice` | |
self.sliceable_head_dim = heads | |
self.added_kv_proj_dim = added_kv_proj_dim | |
self.only_cross_attention = only_cross_attention | |
if self.added_kv_proj_dim is None and self.only_cross_attention: | |
raise ValueError( | |
"`only_cross_attention` can only be set to True if `added_kv_proj_dim` is not None. Make sure to set either `only_cross_attention=False` or define `added_kv_proj_dim`." | |
) | |
if norm_num_groups is not None: | |
self.group_norm = nn.GroupNorm( | |
num_channels=query_dim, num_groups=norm_num_groups, eps=eps, affine=True | |
) | |
else: | |
self.group_norm = None | |
if spatial_norm_dim is not None: | |
self.spatial_norm = SpatialNorm( | |
f_channels=query_dim, zq_channels=spatial_norm_dim | |
) | |
else: | |
self.spatial_norm = None | |
if cross_attention_norm is None: | |
self.norm_cross = None | |
elif cross_attention_norm == "layer_norm": | |
self.norm_cross = nn.LayerNorm(self.cross_attention_dim) | |
elif cross_attention_norm == "group_norm": | |
if self.added_kv_proj_dim is not None: | |
# The given `encoder_hidden_states` are initially of shape | |
# (batch_size, seq_len, added_kv_proj_dim) before being projected | |
# to (batch_size, seq_len, cross_attention_dim). The norm is applied | |
# before the projection, so we need to use `added_kv_proj_dim` as | |
# the number of channels for the group norm. | |
norm_cross_num_channels = added_kv_proj_dim | |
else: | |
norm_cross_num_channels = self.cross_attention_dim | |
self.norm_cross = nn.GroupNorm( | |
num_channels=norm_cross_num_channels, | |
num_groups=cross_attention_norm_num_groups, | |
eps=1e-5, | |
affine=True, | |
) | |
else: | |
raise ValueError( | |
f"unknown cross_attention_norm: {cross_attention_norm}. Should be None, 'layer_norm' or 'group_norm'" | |
) | |
linear_cls = nn.Linear | |
self.linear_cls = linear_cls | |
self.to_q = linear_cls(query_dim, self.inner_dim, bias=bias) | |
if not self.only_cross_attention: | |
# only relevant for the `AddedKVProcessor` classes | |
self.to_k = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
self.to_v = linear_cls(self.cross_attention_dim, self.inner_dim, bias=bias) | |
else: | |
self.to_k = None | |
self.to_v = None | |
if self.added_kv_proj_dim is not None: | |
self.add_k_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
self.add_v_proj = linear_cls(added_kv_proj_dim, self.inner_dim) | |
self.to_out = nn.ModuleList([]) | |
self.to_out.append(linear_cls(self.inner_dim, self.out_dim, bias=out_bias)) | |
self.to_out.append(nn.Dropout(dropout)) | |
# set attention processor | |
# We use the AttnProcessor2_0 by default when torch 2.x is used which uses | |
# torch.nn.functional.scaled_dot_product_attention for native Flash/memory_efficient_attention | |
# but only if it has the default `scale` argument. TODO remove scale_qk check when we move to torch 2.1 | |
if processor is None: | |
processor = AttnProcessor2_0() | |
self.set_processor(processor) | |
def set_use_tpu_flash_attention(self, device_type): | |
r""" | |
Function sets the flag in this object. The flag will enforce the usage of TPU attention kernel. | |
""" | |
if device_type == "xla": | |
self.use_tpu_flash_attention = True | |
def set_processor(self, processor: "AttnProcessor") -> None: | |
r""" | |
Set the attention processor to use. | |
Args: | |
processor (`AttnProcessor`): | |
The attention processor to use. | |
""" | |
# if current processor is in `self._modules` and if passed `processor` is not, we need to | |
# pop `processor` from `self._modules` | |
if ( | |
hasattr(self, "processor") | |
and isinstance(self.processor, torch.nn.Module) | |
and not isinstance(processor, torch.nn.Module) | |
): | |
logger.info( | |
f"You are removing possibly trained weights of {self.processor} with {processor}" | |
) | |
self._modules.pop("processor") | |
self.processor = processor | |
def get_processor( | |
self, return_deprecated_lora: bool = False | |
) -> "AttentionProcessor": # noqa: F821 | |
r""" | |
Get the attention processor in use. | |
Args: | |
return_deprecated_lora (`bool`, *optional*, defaults to `False`): | |
Set to `True` to return the deprecated LoRA attention processor. | |
Returns: | |
"AttentionProcessor": The attention processor in use. | |
""" | |
if not return_deprecated_lora: | |
return self.processor | |
# TODO(Sayak, Patrick). The rest of the function is needed to ensure backwards compatible | |
# serialization format for LoRA Attention Processors. It should be deleted once the integration | |
# with PEFT is completed. | |
is_lora_activated = { | |
name: module.lora_layer is not None | |
for name, module in self.named_modules() | |
if hasattr(module, "lora_layer") | |
} | |
# 1. if no layer has a LoRA activated we can return the processor as usual | |
if not any(is_lora_activated.values()): | |
return self.processor | |
# If doesn't apply LoRA do `add_k_proj` or `add_v_proj` | |
is_lora_activated.pop("add_k_proj", None) | |
is_lora_activated.pop("add_v_proj", None) | |
# 2. else it is not posssible that only some layers have LoRA activated | |
if not all(is_lora_activated.values()): | |
raise ValueError( | |
f"Make sure that either all layers or no layers have LoRA activated, but have {is_lora_activated}" | |
) | |
# 3. And we need to merge the current LoRA layers into the corresponding LoRA attention processor | |
non_lora_processor_cls_name = self.processor.__class__.__name__ | |
lora_processor_cls = getattr( | |
import_module(__name__), "LoRA" + non_lora_processor_cls_name | |
) | |
hidden_size = self.inner_dim | |
# now create a LoRA attention processor from the LoRA layers | |
if lora_processor_cls in [ | |
LoRAAttnProcessor, | |
LoRAAttnProcessor2_0, | |
LoRAXFormersAttnProcessor, | |
]: | |
kwargs = { | |
"cross_attention_dim": self.cross_attention_dim, | |
"rank": self.to_q.lora_layer.rank, | |
"network_alpha": self.to_q.lora_layer.network_alpha, | |
"q_rank": self.to_q.lora_layer.rank, | |
"q_hidden_size": self.to_q.lora_layer.out_features, | |
"k_rank": self.to_k.lora_layer.rank, | |
"k_hidden_size": self.to_k.lora_layer.out_features, | |
"v_rank": self.to_v.lora_layer.rank, | |
"v_hidden_size": self.to_v.lora_layer.out_features, | |
"out_rank": self.to_out[0].lora_layer.rank, | |
"out_hidden_size": self.to_out[0].lora_layer.out_features, | |
} | |
if hasattr(self.processor, "attention_op"): | |
kwargs["attention_op"] = self.processor.attention_op | |
lora_processor = lora_processor_cls(hidden_size, **kwargs) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict( | |
self.to_out[0].lora_layer.state_dict() | |
) | |
elif lora_processor_cls == LoRAAttnAddedKVProcessor: | |
lora_processor = lora_processor_cls( | |
hidden_size, | |
cross_attention_dim=self.add_k_proj.weight.shape[0], | |
rank=self.to_q.lora_layer.rank, | |
network_alpha=self.to_q.lora_layer.network_alpha, | |
) | |
lora_processor.to_q_lora.load_state_dict(self.to_q.lora_layer.state_dict()) | |
lora_processor.to_k_lora.load_state_dict(self.to_k.lora_layer.state_dict()) | |
lora_processor.to_v_lora.load_state_dict(self.to_v.lora_layer.state_dict()) | |
lora_processor.to_out_lora.load_state_dict( | |
self.to_out[0].lora_layer.state_dict() | |
) | |
# only save if used | |
if self.add_k_proj.lora_layer is not None: | |
lora_processor.add_k_proj_lora.load_state_dict( | |
self.add_k_proj.lora_layer.state_dict() | |
) | |
lora_processor.add_v_proj_lora.load_state_dict( | |
self.add_v_proj.lora_layer.state_dict() | |
) | |
else: | |
lora_processor.add_k_proj_lora = None | |
lora_processor.add_v_proj_lora = None | |
else: | |
raise ValueError(f"{lora_processor_cls} does not exist.") | |
return lora_processor | |
def forward( | |
self, | |
hidden_states: torch.FloatTensor, | |
freqs_cis: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
**cross_attention_kwargs, | |
) -> torch.Tensor: | |
r""" | |
The forward method of the `Attention` class. | |
Args: | |
hidden_states (`torch.Tensor`): | |
The hidden states of the query. | |
encoder_hidden_states (`torch.Tensor`, *optional*): | |
The hidden states of the encoder. | |
attention_mask (`torch.Tensor`, *optional*): | |
The attention mask to use. If `None`, no mask is applied. | |
**cross_attention_kwargs: | |
Additional keyword arguments to pass along to the cross attention. | |
Returns: | |
`torch.Tensor`: The output of the attention layer. | |
""" | |
# The `Attention` class can call different attention processors / attention functions | |
# here we simply pass along all tensors to the selected processor class | |
# For standard processors that are defined here, `**cross_attention_kwargs` is empty | |
attn_parameters = set( | |
inspect.signature(self.processor.__call__).parameters.keys() | |
) | |
unused_kwargs = [ | |
k for k, _ in cross_attention_kwargs.items() if k not in attn_parameters | |
] | |
if len(unused_kwargs) > 0: | |
logger.warning( | |
f"cross_attention_kwargs {unused_kwargs} are not expected by" | |
f" {self.processor.__class__.__name__} and will be ignored." | |
) | |
cross_attention_kwargs = { | |
k: w for k, w in cross_attention_kwargs.items() if k in attn_parameters | |
} | |
return self.processor( | |
self, | |
hidden_states, | |
freqs_cis=freqs_cis, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
def batch_to_head_dim(self, tensor: torch.Tensor) -> torch.Tensor: | |
r""" | |
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size // heads, seq_len, dim * heads]`. `heads` | |
is the number of heads initialized while constructing the `Attention` class. | |
Args: | |
tensor (`torch.Tensor`): The tensor to reshape. | |
Returns: | |
`torch.Tensor`: The reshaped tensor. | |
""" | |
head_size = self.heads | |
batch_size, seq_len, dim = tensor.shape | |
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) | |
tensor = tensor.permute(0, 2, 1, 3).reshape( | |
batch_size // head_size, seq_len, dim * head_size | |
) | |
return tensor | |
def head_to_batch_dim(self, tensor: torch.Tensor, out_dim: int = 3) -> torch.Tensor: | |
r""" | |
Reshape the tensor from `[batch_size, seq_len, dim]` to `[batch_size, seq_len, heads, dim // heads]` `heads` is | |
the number of heads initialized while constructing the `Attention` class. | |
Args: | |
tensor (`torch.Tensor`): The tensor to reshape. | |
out_dim (`int`, *optional*, defaults to `3`): The output dimension of the tensor. If `3`, the tensor is | |
reshaped to `[batch_size * heads, seq_len, dim // heads]`. | |
Returns: | |
`torch.Tensor`: The reshaped tensor. | |
""" | |
head_size = self.heads | |
if tensor.ndim == 3: | |
batch_size, seq_len, dim = tensor.shape | |
extra_dim = 1 | |
else: | |
batch_size, extra_dim, seq_len, dim = tensor.shape | |
tensor = tensor.reshape( | |
batch_size, seq_len * extra_dim, head_size, dim // head_size | |
) | |
tensor = tensor.permute(0, 2, 1, 3) | |
if out_dim == 3: | |
tensor = tensor.reshape( | |
batch_size * head_size, seq_len * extra_dim, dim // head_size | |
) | |
return tensor | |
def get_attention_scores( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
attention_mask: torch.Tensor = None, | |
) -> torch.Tensor: | |
r""" | |
Compute the attention scores. | |
Args: | |
query (`torch.Tensor`): The query tensor. | |
key (`torch.Tensor`): The key tensor. | |
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied. | |
Returns: | |
`torch.Tensor`: The attention probabilities/scores. | |
""" | |
dtype = query.dtype | |
if self.upcast_attention: | |
query = query.float() | |
key = key.float() | |
if attention_mask is None: | |
baddbmm_input = torch.empty( | |
query.shape[0], | |
query.shape[1], | |
key.shape[1], | |
dtype=query.dtype, | |
device=query.device, | |
) | |
beta = 0 | |
else: | |
baddbmm_input = attention_mask | |
beta = 1 | |
attention_scores = torch.baddbmm( | |
baddbmm_input, | |
query, | |
key.transpose(-1, -2), | |
beta=beta, | |
alpha=self.scale, | |
) | |
del baddbmm_input | |
if self.upcast_softmax: | |
attention_scores = attention_scores.float() | |
attention_probs = attention_scores.softmax(dim=-1) | |
del attention_scores | |
attention_probs = attention_probs.to(dtype) | |
return attention_probs | |
def prepare_attention_mask( | |
self, | |
attention_mask: torch.Tensor, | |
target_length: int, | |
batch_size: int, | |
out_dim: int = 3, | |
) -> torch.Tensor: | |
r""" | |
Prepare the attention mask for the attention computation. | |
Args: | |
attention_mask (`torch.Tensor`): | |
The attention mask to prepare. | |
target_length (`int`): | |
The target length of the attention mask. This is the length of the attention mask after padding. | |
batch_size (`int`): | |
The batch size, which is used to repeat the attention mask. | |
out_dim (`int`, *optional*, defaults to `3`): | |
The output dimension of the attention mask. Can be either `3` or `4`. | |
Returns: | |
`torch.Tensor`: The prepared attention mask. | |
""" | |
head_size = self.heads | |
if attention_mask is None: | |
return attention_mask | |
current_length: int = attention_mask.shape[-1] | |
if current_length != target_length: | |
if attention_mask.device.type == "mps": | |
# HACK: MPS: Does not support padding by greater than dimension of input tensor. | |
# Instead, we can manually construct the padding tensor. | |
padding_shape = ( | |
attention_mask.shape[0], | |
attention_mask.shape[1], | |
target_length, | |
) | |
padding = torch.zeros( | |
padding_shape, | |
dtype=attention_mask.dtype, | |
device=attention_mask.device, | |
) | |
attention_mask = torch.cat([attention_mask, padding], dim=2) | |
else: | |
# TODO: for pipelines such as stable-diffusion, padding cross-attn mask: | |
# we want to instead pad by (0, remaining_length), where remaining_length is: | |
# remaining_length: int = target_length - current_length | |
# TODO: re-enable tests/models/test_models_unet_2d_condition.py#test_model_xattn_padding | |
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) | |
if out_dim == 3: | |
if attention_mask.shape[0] < batch_size * head_size: | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=0) | |
elif out_dim == 4: | |
attention_mask = attention_mask.unsqueeze(1) | |
attention_mask = attention_mask.repeat_interleave(head_size, dim=1) | |
return attention_mask | |
def norm_encoder_hidden_states( | |
self, encoder_hidden_states: torch.Tensor | |
) -> torch.Tensor: | |
r""" | |
Normalize the encoder hidden states. Requires `self.norm_cross` to be specified when constructing the | |
`Attention` class. | |
Args: | |
encoder_hidden_states (`torch.Tensor`): Hidden states of the encoder. | |
Returns: | |
`torch.Tensor`: The normalized encoder hidden states. | |
""" | |
assert ( | |
self.norm_cross is not None | |
), "self.norm_cross must be defined to call self.norm_encoder_hidden_states" | |
if isinstance(self.norm_cross, nn.LayerNorm): | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
elif isinstance(self.norm_cross, nn.GroupNorm): | |
# Group norm norms along the channels dimension and expects | |
# input to be in the shape of (N, C, *). In this case, we want | |
# to norm along the hidden dimension, so we need to move | |
# (batch_size, sequence_length, hidden_size) -> | |
# (batch_size, hidden_size, sequence_length) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
encoder_hidden_states = self.norm_cross(encoder_hidden_states) | |
encoder_hidden_states = encoder_hidden_states.transpose(1, 2) | |
else: | |
assert False | |
return encoder_hidden_states | |
def apply_rotary_emb( | |
input_tensor: torch.Tensor, | |
freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor], | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
cos_freqs = freqs_cis[0] | |
sin_freqs = freqs_cis[1] | |
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2) | |
t1, t2 = t_dup.unbind(dim=-1) | |
t_dup = torch.stack((-t2, t1), dim=-1) | |
input_tensor_rot = rearrange(t_dup, "... d r -> ... (d r)") | |
out = input_tensor * cos_freqs + input_tensor_rot * sin_freqs | |
return out | |
class AttnProcessor2_0: | |
r""" | |
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). | |
""" | |
def __init__(self): | |
pass | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
freqs_cis: Tuple[torch.FloatTensor, torch.FloatTensor], | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.FloatTensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view( | |
batch_size, channel, height * width | |
).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape | |
if encoder_hidden_states is None | |
else encoder_hidden_states.shape | |
) | |
if (attention_mask is not None) and (not attn.use_tpu_flash_attention): | |
attention_mask = attn.prepare_attention_mask( | |
attention_mask, sequence_length, batch_size | |
) | |
# scaled_dot_product_attention expects attention_mask shape to be | |
# (batch, heads, source_length, target_length) | |
attention_mask = attention_mask.view( | |
batch_size, attn.heads, -1, attention_mask.shape[-1] | |
) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( | |
1, 2 | |
) | |
query = attn.to_q(hidden_states) | |
query = attn.q_norm(query) | |
if encoder_hidden_states is not None: | |
if attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states( | |
encoder_hidden_states | |
) | |
key = attn.to_k(encoder_hidden_states) | |
key = attn.k_norm(key) | |
else: # if no context provided do self-attention | |
encoder_hidden_states = hidden_states | |
key = attn.to_k(hidden_states) | |
key = attn.k_norm(key) | |
if attn.use_rope: | |
key = attn.apply_rotary_emb(key, freqs_cis) | |
query = attn.apply_rotary_emb(query, freqs_cis) | |
value = attn.to_v(encoder_hidden_states) | |
inner_dim = key.shape[-1] | |
head_dim = inner_dim // attn.heads | |
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
# the output of sdp = (batch, num_heads, seq_len, head_dim) | |
if attn.use_tpu_flash_attention: # use tpu attention offload 'flash attention' | |
q_segment_indexes = None | |
if ( | |
attention_mask is not None | |
): # if mask is required need to tune both segmenIds fields | |
# attention_mask = torch.squeeze(attention_mask).to(torch.float32) | |
attention_mask = attention_mask.to(torch.float32) | |
q_segment_indexes = torch.ones( | |
batch_size, query.shape[2], device=query.device, dtype=torch.float32 | |
) | |
assert ( | |
attention_mask.shape[1] == key.shape[2] | |
), f"ERROR: KEY SHAPE must be same as attention mask [{key.shape[2]}, {attention_mask.shape[1]}]" | |
assert ( | |
query.shape[2] % 128 == 0 | |
), f"ERROR: QUERY SHAPE must be divisible by 128 (TPU limitation) [{query.shape[2]}]" | |
assert ( | |
key.shape[2] % 128 == 0 | |
), f"ERROR: KEY SHAPE must be divisible by 128 (TPU limitation) [{key.shape[2]}]" | |
# run the TPU kernel implemented in jax with pallas | |
hidden_states = flash_attention( | |
q=query, | |
k=key, | |
v=value, | |
q_segment_ids=q_segment_indexes, | |
kv_segment_ids=attention_mask, | |
sm_scale=attn.scale, | |
) | |
else: | |
hidden_states = F.scaled_dot_product_attention( | |
query, | |
key, | |
value, | |
attn_mask=attention_mask, | |
dropout_p=0.0, | |
is_causal=False, | |
) | |
hidden_states = hidden_states.transpose(1, 2).reshape( | |
batch_size, -1, attn.heads * head_dim | |
) | |
hidden_states = hidden_states.to(query.dtype) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape( | |
batch_size, channel, height, width | |
) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class AttnProcessor: | |
r""" | |
Default processor for performing attention-related computations. | |
""" | |
def __call__( | |
self, | |
attn: Attention, | |
hidden_states: torch.FloatTensor, | |
encoder_hidden_states: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.FloatTensor] = None, | |
temb: Optional[torch.FloatTensor] = None, | |
*args, | |
**kwargs, | |
) -> torch.Tensor: | |
if len(args) > 0 or kwargs.get("scale", None) is not None: | |
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." | |
deprecate("scale", "1.0.0", deprecation_message) | |
residual = hidden_states | |
if attn.spatial_norm is not None: | |
hidden_states = attn.spatial_norm(hidden_states, temb) | |
input_ndim = hidden_states.ndim | |
if input_ndim == 4: | |
batch_size, channel, height, width = hidden_states.shape | |
hidden_states = hidden_states.view( | |
batch_size, channel, height * width | |
).transpose(1, 2) | |
batch_size, sequence_length, _ = ( | |
hidden_states.shape | |
if encoder_hidden_states is None | |
else encoder_hidden_states.shape | |
) | |
attention_mask = attn.prepare_attention_mask( | |
attention_mask, sequence_length, batch_size | |
) | |
if attn.group_norm is not None: | |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose( | |
1, 2 | |
) | |
query = attn.to_q(hidden_states) | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
elif attn.norm_cross: | |
encoder_hidden_states = attn.norm_encoder_hidden_states( | |
encoder_hidden_states | |
) | |
key = attn.to_k(encoder_hidden_states) | |
value = attn.to_v(encoder_hidden_states) | |
query = attn.head_to_batch_dim(query) | |
key = attn.head_to_batch_dim(key) | |
value = attn.head_to_batch_dim(value) | |
query = attn.q_norm(query) | |
key = attn.k_norm(key) | |
attention_probs = attn.get_attention_scores(query, key, attention_mask) | |
hidden_states = torch.bmm(attention_probs, value) | |
hidden_states = attn.batch_to_head_dim(hidden_states) | |
# linear proj | |
hidden_states = attn.to_out[0](hidden_states) | |
# dropout | |
hidden_states = attn.to_out[1](hidden_states) | |
if input_ndim == 4: | |
hidden_states = hidden_states.transpose(-1, -2).reshape( | |
batch_size, channel, height, width | |
) | |
if attn.residual_connection: | |
hidden_states = hidden_states + residual | |
hidden_states = hidden_states / attn.rescale_output_factor | |
return hidden_states | |
class FeedForward(nn.Module): | |
r""" | |
A feed-forward layer. | |
Parameters: | |
dim (`int`): The number of channels in the input. | |
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. | |
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. | |
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. | |
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. | |
final_dropout (`bool` *optional*, defaults to False): Apply a final dropout. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__( | |
self, | |
dim: int, | |
dim_out: Optional[int] = None, | |
mult: int = 4, | |
dropout: float = 0.0, | |
activation_fn: str = "geglu", | |
final_dropout: bool = False, | |
inner_dim=None, | |
bias: bool = True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
linear_cls = nn.Linear | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
elif activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
else: | |
raise ValueError(f"Unsupported activation function: {activation_fn}") | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(linear_cls(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor, scale: float = 1.0) -> torch.Tensor: | |
compatible_cls = (GEGLU, LoRACompatibleLinear) | |
for module in self.net: | |
if isinstance(module, compatible_cls): | |
hidden_states = module(hidden_states, scale) | |
else: | |
hidden_states = module(hidden_states) | |
return hidden_states | |