import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import AutoModel, AutoTokenizer, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # Load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device) # Load text-to-speech checkpoint and speaker embeddings tokenizer = AutoTokenizer.from_pretrained("ttskit/ttskit-tts-ljspeech") model = AutoModel.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device) vocoder = AutoModel.from_pretrained("ljspeech/vocoder-cryptron").to(device) # Sample code to load speaker embeddings (adjust according to the actual format of the dataset) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] def synthesise(text): inputs = tokenizer(text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Facebook's [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base-960h) model for speech translation, ttskit's [ttskit-tts-ljspeech](https://huggingface.co/ttskit/ttskit-tts-ljspeech) for text-to-speech, and [Vocoder Cryptron](https://huggingface.co/ljspeech/vocoder-cryptron) for vocoding: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()