import subprocess # Установка зависимостей внутри пространства subprocess.run(["pip", "install", "vosk"]) subprocess.run(["pip", "install", "SpeechRecognition"]) import gradio as gr import numpy as np import torch import speech_recognition as sr from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor device = "cuda:0" if torch.cuda.is_available() else "cpu" # Load a lightweight text-to-speech checkpoint and speaker embeddings processor = SpeechT5Processor.from_pretrained("ttskit/ttskit-tts-ljspeech") model = SpeechT5ForTextToSpeech.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device) vocoder = SpeechT5HifiGan.from_pretrained("ljspeech/vocoder-cryptron").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def recognize_speech(audio): recognizer = sr.Recognizer() with sr.AudioFile(audio) as source: audio_data = recognizer.record(source) return recognizer.recognize_google(audio_data) def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = recognize_speech(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Google Web Speech API for automatic speech recognition, and lightweight text-to-speech and vocoder models. """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()