elizabetvaganova
commited on
Commit
·
db98dd8
1
Parent(s):
29f42c1
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,16 @@
|
|
1 |
-
import subprocess
|
2 |
-
|
3 |
-
# Установка зависимостей внутри пространства
|
4 |
-
subprocess.run(["pip", "install", "vosk"])
|
5 |
-
subprocess.run(["pip", "install", "SpeechRecognition"])
|
6 |
-
|
7 |
import gradio as gr
|
8 |
import numpy as np
|
9 |
import torch
|
10 |
-
import speech_recognition as sr
|
11 |
from datasets import load_dataset
|
12 |
-
|
|
|
13 |
|
14 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
-
#
|
|
|
|
|
|
|
17 |
processor = SpeechT5Processor.from_pretrained("ttskit/ttskit-tts-ljspeech")
|
18 |
|
19 |
model = SpeechT5ForTextToSpeech.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
|
@@ -22,11 +19,9 @@ vocoder = SpeechT5HifiGan.from_pretrained("ljspeech/vocoder-cryptron").to(device
|
|
22 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
23 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
24 |
|
25 |
-
def
|
26 |
-
|
27 |
-
|
28 |
-
audio_data = recognizer.record(source)
|
29 |
-
return recognizer.recognize_google(audio_data)
|
30 |
|
31 |
def synthesise(text):
|
32 |
inputs = processor(text=text, return_tensors="pt")
|
@@ -34,14 +29,14 @@ def synthesise(text):
|
|
34 |
return speech.cpu()
|
35 |
|
36 |
def speech_to_speech_translation(audio):
|
37 |
-
translated_text =
|
38 |
synthesised_speech = synthesise(translated_text)
|
39 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
40 |
return 16000, synthesised_speech
|
41 |
|
42 |
title = "Cascaded STST"
|
43 |
description = """
|
44 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses
|
45 |
"""
|
46 |
|
47 |
demo = gr.Blocks()
|
@@ -66,4 +61,4 @@ file_translate = gr.Interface(
|
|
66 |
with demo:
|
67 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
68 |
|
69 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
4 |
from datasets import load_dataset
|
5 |
+
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
7 |
|
8 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
9 |
|
10 |
+
# load speech translation checkpoint
|
11 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h", device=device)
|
12 |
+
|
13 |
+
# load text-to-speech checkpoint and speaker embeddings
|
14 |
processor = SpeechT5Processor.from_pretrained("ttskit/ttskit-tts-ljspeech")
|
15 |
|
16 |
model = SpeechT5ForTextToSpeech.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
|
|
|
19 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
20 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
21 |
|
22 |
+
def translate(audio):
|
23 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
24 |
+
return outputs["text"]
|
|
|
|
|
25 |
|
26 |
def synthesise(text):
|
27 |
inputs = processor(text=text, return_tensors="pt")
|
|
|
29 |
return speech.cpu()
|
30 |
|
31 |
def speech_to_speech_translation(audio):
|
32 |
+
translated_text = translate(audio)
|
33 |
synthesised_speech = synthesise(translated_text)
|
34 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
35 |
return 16000, synthesised_speech
|
36 |
|
37 |
title = "Cascaded STST"
|
38 |
description = """
|
39 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses Facebook's [Wav2Vec 2.0](https://huggingface.co/facebook/wav2vec2-base-960h) model for speech recognition, and a lightweight text-to-speech model ([ttskit/ttskit-tts-ljspeech](https://huggingface.co/ttskit/ttskit-tts-ljspeech)) along with a lightweight vocoder ([ljspeech/vocoder-cryptron](https://huggingface.co/ljspeech/vocoder-cryptron)).
|
40 |
"""
|
41 |
|
42 |
demo = gr.Blocks()
|
|
|
61 |
with demo:
|
62 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
63 |
|
64 |
+
demo.launch()
|