elizabetvaganova
commited on
Commit
·
16bbc4e
1
Parent(s):
5a46f1e
Update app.py
Browse files
app.py
CHANGED
@@ -3,48 +3,50 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, pipeline
|
7 |
-
from transformers import SpeechT5Processor
|
8 |
-
|
9 |
-
token = "<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>"
|
10 |
-
model_identifier = "tugstugi/mongolian-tts-ljspeech"
|
11 |
-
|
12 |
-
processor = SpeechT5Processor.from_pretrained(model_identifier, revision="main", token=token)
|
13 |
|
14 |
|
15 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
|
17 |
# load speech translation checkpoint
|
18 |
-
asr_pipe = pipeline("automatic-speech-recognition", model="
|
19 |
|
20 |
# load text-to-speech checkpoint and speaker embeddings
|
21 |
-
processor = SpeechT5Processor.from_pretrained("
|
22 |
-
|
23 |
|
|
|
24 |
model = SpeechT5ForTextToSpeech.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
|
|
|
|
|
25 |
vocoder = SpeechT5HifiGan.from_pretrained("ljspeech/vocoder-cryptron").to(device)
|
26 |
|
27 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
28 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
29 |
|
|
|
30 |
def translate(audio):
|
31 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
32 |
return outputs["text"]
|
33 |
|
|
|
34 |
def synthesise(text):
|
35 |
inputs = processor(text=text, return_tensors="pt")
|
36 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
37 |
return speech.cpu()
|
38 |
|
|
|
39 |
def speech_to_speech_translation(audio):
|
40 |
translated_text = translate(audio)
|
41 |
synthesised_speech = synthesise(translated_text)
|
42 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
43 |
return 16000, synthesised_speech
|
44 |
|
|
|
45 |
title = "Cascaded STST"
|
46 |
description = """
|
47 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses
|
|
|
|
|
48 |
"""
|
49 |
|
50 |
demo = gr.Blocks()
|
@@ -69,4 +71,4 @@ file_translate = gr.Interface(
|
|
69 |
with demo:
|
70 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
71 |
|
72 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
# load speech translation checkpoint
|
12 |
+
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
+
processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
|
|
16 |
|
17 |
+
# Using a more lightweight text-to-speech model
|
18 |
model = SpeechT5ForTextToSpeech.from_pretrained("ttskit/ttskit-tts-ljspeech").to(device)
|
19 |
+
|
20 |
+
# Using a more lightweight vocoder
|
21 |
vocoder = SpeechT5HifiGan.from_pretrained("ljspeech/vocoder-cryptron").to(device)
|
22 |
|
23 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
24 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
25 |
|
26 |
+
|
27 |
def translate(audio):
|
28 |
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
|
29 |
return outputs["text"]
|
30 |
|
31 |
+
|
32 |
def synthesise(text):
|
33 |
inputs = processor(text=text, return_tensors="pt")
|
34 |
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
35 |
return speech.cpu()
|
36 |
|
37 |
+
|
38 |
def speech_to_speech_translation(audio):
|
39 |
translated_text = translate(audio)
|
40 |
synthesised_speech = synthesise(translated_text)
|
41 |
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
42 |
return 16000, synthesised_speech
|
43 |
|
44 |
+
|
45 |
title = "Cascaded STST"
|
46 |
description = """
|
47 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
48 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
49 |
+
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
50 |
"""
|
51 |
|
52 |
demo = gr.Blocks()
|
|
|
71 |
with demo:
|
72 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
73 |
|
74 |
+
demo.launch()
|