Commit
·
f1f92f7
1
Parent(s):
3445828
feat: Add Argilla review integration
Browse files- app.py +5 -1
- pdm.lock +0 -0
- pyproject.toml +3 -2
- requirements.txt +3 -2
- src/distilabel_dataset_generator/apps/sft.py +264 -30
- src/distilabel_dataset_generator/pipelines/embeddings.py +16 -0
- src/distilabel_dataset_generator/utils.py +10 -0
app.py
CHANGED
@@ -54,6 +54,10 @@ demo = gr.TabbedInterface(
|
|
54 |
margin-bottom: 20px;
|
55 |
}
|
56 |
}
|
|
|
|
|
|
|
|
|
57 |
</style>
|
58 |
<div class="header-container">
|
59 |
<div class="logo-container">
|
@@ -62,7 +66,7 @@ demo = gr.TabbedInterface(
|
|
62 |
</a>
|
63 |
</div>
|
64 |
<div class="title-container">
|
65 |
-
<h1 style="margin: 0; font-size: 2em;">🧬
|
66 |
<p style="margin: 10px 0 0 0; color: #666; font-size: 1.1em;">Build datasets using natural language</p>
|
67 |
</div>
|
68 |
</div>
|
|
|
54 |
margin-bottom: 20px;
|
55 |
}
|
56 |
}
|
57 |
+
button[role="tab"].selected {
|
58 |
+
color: black;
|
59 |
+
font-weight: bold;
|
60 |
+
}
|
61 |
</style>
|
62 |
<div class="header-container">
|
63 |
<div class="logo-container">
|
|
|
66 |
</a>
|
67 |
</div>
|
68 |
<div class="title-container">
|
69 |
+
<h1 style="margin: 0; font-size: 2em;">🧬 Synthetic Data Generator</h1>
|
70 |
<p style="margin: 10px 0 0 0; color: #666; font-size: 1.1em;">Build datasets using natural language</p>
|
71 |
</div>
|
72 |
</div>
|
pdm.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
pyproject.toml
CHANGED
@@ -6,11 +6,12 @@ authors = [
|
|
6 |
{name = "davidberenstein1957", email = "[email protected]"},
|
7 |
]
|
8 |
dependencies = [
|
9 |
-
"distilabel[hf-inference-endpoints]
|
10 |
"gradio[oauth]<5,>=4.38",
|
11 |
"transformers>=4.44.2",
|
|
|
12 |
]
|
13 |
-
requires-python = "
|
14 |
readme = "README.md"
|
15 |
license = {text = "apache 2"}
|
16 |
|
|
|
6 |
{name = "davidberenstein1957", email = "[email protected]"},
|
7 |
]
|
8 |
dependencies = [
|
9 |
+
"distilabel[hf-inference-endpoints,argilla]==1.4.0",
|
10 |
"gradio[oauth]<5,>=4.38",
|
11 |
"transformers>=4.44.2",
|
12 |
+
"sentence-transformers>=3.2.0",
|
13 |
]
|
14 |
+
requires-python = "<3.13,>=3.10"
|
15 |
readme = "README.md"
|
16 |
license = {text = "apache 2"}
|
17 |
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
transformers
|
2 |
gradio[oauth]
|
3 |
-
distilabel[hf-inference-endpoints]
|
4 |
-
beautifulsoup4
|
|
|
|
1 |
transformers
|
2 |
gradio[oauth]
|
3 |
+
distilabel[hf-inference-endpoints,argilla]
|
4 |
+
beautifulsoup4
|
5 |
+
sentence-transformers
|
src/distilabel_dataset_generator/apps/sft.py
CHANGED
@@ -1,6 +1,8 @@
|
|
|
|
1 |
import io
|
2 |
-
from typing import Union
|
3 |
|
|
|
4 |
import gradio as gr
|
5 |
import pandas as pd
|
6 |
from datasets import Dataset
|
@@ -8,7 +10,12 @@ from distilabel.distiset import Distiset
|
|
8 |
from distilabel.steps.tasks.text_generation import TextGeneration
|
9 |
from gradio.oauth import OAuthToken
|
10 |
from huggingface_hub import upload_file
|
|
|
11 |
|
|
|
|
|
|
|
|
|
12 |
from src.distilabel_dataset_generator.pipelines.sft import (
|
13 |
DEFAULT_BATCH_SIZE,
|
14 |
DEFAULT_DATASET_DESCRIPTIONS,
|
@@ -21,12 +28,21 @@ from src.distilabel_dataset_generator.pipelines.sft import (
|
|
21 |
get_response_generator,
|
22 |
)
|
23 |
from src.distilabel_dataset_generator.utils import (
|
|
|
24 |
get_login_button,
|
25 |
get_org_dropdown,
|
26 |
swap_visibilty,
|
27 |
)
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
31 |
progress(0.0, desc="Generating system prompt")
|
32 |
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
@@ -82,7 +98,7 @@ def generate_dataset(
|
|
82 |
num_rows: int = 5,
|
83 |
is_sample: bool = False,
|
84 |
progress=gr.Progress(),
|
85 |
-
):
|
86 |
progress(0.0, desc="(1/2) Generating instructions")
|
87 |
magpie_generator = get_magpie_generator(
|
88 |
num_turns, num_rows, system_prompt, is_sample
|
@@ -191,7 +207,12 @@ def push_to_hub(
|
|
191 |
repo_name: str = None,
|
192 |
oauth_token: Union[OAuthToken, None] = None,
|
193 |
progress=gr.Progress(),
|
194 |
-
):
|
|
|
|
|
|
|
|
|
|
|
195 |
progress(0.1, desc="Setting up dataset")
|
196 |
repo_id = _check_push_to_hub(org_name, repo_name)
|
197 |
distiset = Distiset(
|
@@ -208,7 +229,142 @@ def push_to_hub(
|
|
208 |
create_pr=False,
|
209 |
)
|
210 |
progress(1.0, desc="Dataset pushed to hub")
|
211 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
|
213 |
|
214 |
def upload_pipeline_code(
|
@@ -333,27 +489,47 @@ with gr.Blocks(
|
|
333 |
maximum=500,
|
334 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
335 |
)
|
336 |
-
with gr.
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
)
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
with gr.Row():
|
358 |
final_dataset = gr.Dataframe(
|
359 |
value=DEFAULT_DATASETS[0],
|
@@ -365,7 +541,29 @@ with gr.Blocks(
|
|
365 |
with gr.Row():
|
366 |
success_message = gr.Markdown(visible=False)
|
367 |
|
368 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
369 |
return gr.Markdown(
|
370 |
value=f"""
|
371 |
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
|
@@ -378,7 +576,7 @@ with gr.Blocks(
|
|
378 |
</a>
|
379 |
</p>
|
380 |
</div>
|
381 |
-
|
382 |
visible=True,
|
383 |
)
|
384 |
|
@@ -407,8 +605,21 @@ with gr.Blocks(
|
|
407 |
inputs=[sample_dataset],
|
408 |
outputs=[final_dataset],
|
409 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
410 |
|
411 |
-
|
412 |
fn=hide_success_message,
|
413 |
outputs=[success_message],
|
414 |
).then(
|
@@ -416,6 +627,15 @@ with gr.Blocks(
|
|
416 |
inputs=[system_prompt, num_turns, num_rows],
|
417 |
outputs=[final_dataset],
|
418 |
show_progress=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
)
|
420 |
|
421 |
btn_generate_and_push_to_hub.click(
|
@@ -437,7 +657,7 @@ with gr.Blocks(
|
|
437 |
outputs=[],
|
438 |
show_progress=True,
|
439 |
).success(
|
440 |
-
fn=
|
441 |
inputs=[org_name, repo_name],
|
442 |
outputs=[success_message],
|
443 |
)
|
@@ -456,11 +676,25 @@ with gr.Blocks(
|
|
456 |
outputs=[],
|
457 |
show_progress=True,
|
458 |
).success(
|
459 |
-
fn=
|
460 |
inputs=[org_name, repo_name],
|
461 |
outputs=[success_message],
|
462 |
)
|
463 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
464 |
system_prompt.change(
|
465 |
fn=generate_pipeline_code,
|
466 |
inputs=[system_prompt, num_turns, num_rows],
|
|
|
1 |
+
import ast
|
2 |
import io
|
3 |
+
from typing import Dict, List, Union
|
4 |
|
5 |
+
import argilla as rg
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
from datasets import Dataset
|
|
|
10 |
from distilabel.steps.tasks.text_generation import TextGeneration
|
11 |
from gradio.oauth import OAuthToken
|
12 |
from huggingface_hub import upload_file
|
13 |
+
from huggingface_hub.hf_api import HfApi
|
14 |
|
15 |
+
from src.distilabel_dataset_generator.pipelines.embeddings import (
|
16 |
+
get_embeddings,
|
17 |
+
get_sentence_embedding_dimensions,
|
18 |
+
)
|
19 |
from src.distilabel_dataset_generator.pipelines.sft import (
|
20 |
DEFAULT_BATCH_SIZE,
|
21 |
DEFAULT_DATASET_DESCRIPTIONS,
|
|
|
28 |
get_response_generator,
|
29 |
)
|
30 |
from src.distilabel_dataset_generator.utils import (
|
31 |
+
get_argilla_client,
|
32 |
get_login_button,
|
33 |
get_org_dropdown,
|
34 |
swap_visibilty,
|
35 |
)
|
36 |
|
37 |
|
38 |
+
def convert_to_list_of_dicts(messages: str) -> List[Dict[str, str]]:
|
39 |
+
return ast.literal_eval(
|
40 |
+
messages.replace("'user'}", "'user'},")
|
41 |
+
.replace("'system'}", "'system'},")
|
42 |
+
.replace("'assistant'}", "'assistant'},")
|
43 |
+
)
|
44 |
+
|
45 |
+
|
46 |
def generate_system_prompt(dataset_description, progress=gr.Progress()):
|
47 |
progress(0.0, desc="Generating system prompt")
|
48 |
if dataset_description in DEFAULT_DATASET_DESCRIPTIONS:
|
|
|
98 |
num_rows: int = 5,
|
99 |
is_sample: bool = False,
|
100 |
progress=gr.Progress(),
|
101 |
+
) -> pd.DataFrame:
|
102 |
progress(0.0, desc="(1/2) Generating instructions")
|
103 |
magpie_generator = get_magpie_generator(
|
104 |
num_turns, num_rows, system_prompt, is_sample
|
|
|
207 |
repo_name: str = None,
|
208 |
oauth_token: Union[OAuthToken, None] = None,
|
209 |
progress=gr.Progress(),
|
210 |
+
) -> pd.DataFrame:
|
211 |
+
original_dataframe = dataframe.copy(deep=True)
|
212 |
+
if "messages" in dataframe.columns:
|
213 |
+
dataframe["messages"] = dataframe["messages"].apply(
|
214 |
+
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
|
215 |
+
)
|
216 |
progress(0.1, desc="Setting up dataset")
|
217 |
repo_id = _check_push_to_hub(org_name, repo_name)
|
218 |
distiset = Distiset(
|
|
|
229 |
create_pr=False,
|
230 |
)
|
231 |
progress(1.0, desc="Dataset pushed to hub")
|
232 |
+
return original_dataframe
|
233 |
+
|
234 |
+
|
235 |
+
def push_to_argilla(
|
236 |
+
dataframe: pd.DataFrame,
|
237 |
+
dataset_name: str,
|
238 |
+
oauth_token: Union[OAuthToken, None] = None,
|
239 |
+
progress=gr.Progress(),
|
240 |
+
) -> pd.DataFrame:
|
241 |
+
original_dataframe = dataframe.copy(deep=True)
|
242 |
+
if "messages" in dataframe.columns:
|
243 |
+
dataframe["messages"] = dataframe["messages"].apply(
|
244 |
+
lambda x: convert_to_list_of_dicts(x) if isinstance(x, str) else x
|
245 |
+
)
|
246 |
+
try:
|
247 |
+
progress(0.1, desc="Setting up user and workspace")
|
248 |
+
client = get_argilla_client()
|
249 |
+
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
250 |
+
|
251 |
+
# Create user if it doesn't exist
|
252 |
+
rg_user = client.users(username=hf_user)
|
253 |
+
if rg_user is None:
|
254 |
+
rg_user = client.users.add(rg.User(username=hf_user, role="admin"))
|
255 |
+
|
256 |
+
# Create workspace if it doesn't exist
|
257 |
+
workspace = client.workspaces(name=rg_user.username)
|
258 |
+
if workspace is None:
|
259 |
+
workspace = client.workspaces.add(rg.Workspace(name=rg_user.username))
|
260 |
+
workspace.add_user(rg_user)
|
261 |
+
|
262 |
+
if "messages" in dataframe.columns:
|
263 |
+
settings = rg.Settings(
|
264 |
+
fields=[
|
265 |
+
rg.ChatField(
|
266 |
+
name="messages", description="The messages in the conversation"
|
267 |
+
),
|
268 |
+
],
|
269 |
+
questions=[
|
270 |
+
rg.TextQuestion(
|
271 |
+
name="correct_response",
|
272 |
+
description="The corrected response from the assistant",
|
273 |
+
),
|
274 |
+
],
|
275 |
+
metadata=[
|
276 |
+
rg.IntegerMetadataProperty(
|
277 |
+
name="messages_length", title="Messages Length"
|
278 |
+
),
|
279 |
+
rg.IntegerMetadataProperty(
|
280 |
+
name="response_length", title="Response Length"
|
281 |
+
),
|
282 |
+
],
|
283 |
+
vectors=[
|
284 |
+
rg.VectorField(
|
285 |
+
name="messages_embeddings",
|
286 |
+
dimensions=get_sentence_embedding_dimensions(),
|
287 |
+
)
|
288 |
+
],
|
289 |
+
guidelines="Please review the conversation and provide a score for the assistant's response.",
|
290 |
+
)
|
291 |
+
import pdb
|
292 |
+
|
293 |
+
pdb.set_trace()
|
294 |
+
dataframe["messages_length"] = dataframe["messages"].apply(
|
295 |
+
lambda x: sum([len(y["content"]) for y in x])
|
296 |
+
)
|
297 |
+
dataframe["messages_embeddings"] = get_embeddings(
|
298 |
+
dataframe["messages"].apply(
|
299 |
+
lambda x: " ".join([y["content"] for y in x])
|
300 |
+
)
|
301 |
+
)
|
302 |
+
dataframe["correct_response"] = dataframe["messages"].apply(
|
303 |
+
lambda x: x[-1]["content"]
|
304 |
+
)
|
305 |
+
dataframe["response_length"] = dataframe["correct_response"].apply(len)
|
306 |
+
dataframe["messages"] = dataframe["messages"].apply(lambda x: x[:-1])
|
307 |
+
else:
|
308 |
+
settings = rg.Settings(
|
309 |
+
fields=[
|
310 |
+
rg.TextField(
|
311 |
+
name="prompt",
|
312 |
+
description="The prompt used for the conversation",
|
313 |
+
),
|
314 |
+
rg.TextField(
|
315 |
+
name="completion",
|
316 |
+
description="The completion from the assistant",
|
317 |
+
),
|
318 |
+
],
|
319 |
+
questions=[
|
320 |
+
rg.TextQuestion(
|
321 |
+
name="correct_prompt",
|
322 |
+
description="The corrected prompt from the assistant",
|
323 |
+
),
|
324 |
+
rg.TextQuestion(
|
325 |
+
name="correct_completion",
|
326 |
+
description="The corrected completion from the assistant",
|
327 |
+
),
|
328 |
+
],
|
329 |
+
metadata=[
|
330 |
+
rg.IntegerMetadataProperty(
|
331 |
+
name="prompt_length", title="Prompt Length"
|
332 |
+
),
|
333 |
+
rg.IntegerMetadataProperty(
|
334 |
+
name="completion_length", title="Completion Length"
|
335 |
+
),
|
336 |
+
],
|
337 |
+
vectors=[
|
338 |
+
rg.VectorField(
|
339 |
+
name="prompt_embeddings",
|
340 |
+
dimensions=get_sentence_embedding_dimensions(),
|
341 |
+
)
|
342 |
+
],
|
343 |
+
guidelines="Please review the conversation and correct the prompt and completion where needed.",
|
344 |
+
)
|
345 |
+
dataframe["correct_prompt"] = dataframe["prompt"]
|
346 |
+
dataframe["correct_completion"] = dataframe["completion"]
|
347 |
+
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
|
348 |
+
dataframe["completion_length"] = dataframe["completion"].apply(len)
|
349 |
+
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
|
350 |
+
|
351 |
+
progress(0.5, desc="Creating dataset")
|
352 |
+
if client.datasets(name=dataset_name, workspace=rg_user.username) is not None:
|
353 |
+
raise gr.Error(f"Dataset {dataset_name} already exists")
|
354 |
+
rg_dataset = rg.Dataset(
|
355 |
+
name=dataset_name,
|
356 |
+
workspace=rg_user.username,
|
357 |
+
settings=settings,
|
358 |
+
client=client,
|
359 |
+
)
|
360 |
+
rg_dataset = rg_dataset.create()
|
361 |
+
progress(0.7, desc="Pushing dataset to Argilla")
|
362 |
+
hf_dataset = Dataset.from_pandas(dataframe)
|
363 |
+
rg_dataset.records.log(records=hf_dataset)
|
364 |
+
progress(1.0, desc="Dataset pushed to Argilla")
|
365 |
+
except Exception as e:
|
366 |
+
raise gr.Error(f"Error pushing dataset to Argilla: {e}")
|
367 |
+
return original_dataframe
|
368 |
|
369 |
|
370 |
def upload_pipeline_code(
|
|
|
489 |
maximum=500,
|
490 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
491 |
)
|
492 |
+
with gr.Tab("Hugging Face Hub"):
|
493 |
+
with gr.Row(variant="panel"):
|
494 |
+
org_name = get_org_dropdown()
|
495 |
+
repo_name = gr.Textbox(
|
496 |
+
label="Repo name",
|
497 |
+
placeholder="dataset_name",
|
498 |
+
value="my-distiset",
|
499 |
+
)
|
500 |
+
private = gr.Checkbox(
|
501 |
+
label="Private dataset",
|
502 |
+
value=True,
|
503 |
+
interactive=True,
|
504 |
+
scale=0.5,
|
505 |
+
)
|
506 |
+
with gr.Row(variant="panel"):
|
507 |
+
btn_generate_full_dataset = gr.Button(
|
508 |
+
value="Generate", variant="primary", scale=2
|
509 |
+
)
|
510 |
+
btn_generate_and_push_to_hub = gr.Button(
|
511 |
+
value="Generate and Push to Hub", variant="primary", scale=2
|
512 |
+
)
|
513 |
+
btn_push_to_hub = gr.Button(
|
514 |
+
value="Push to Hub", variant="primary", scale=2
|
515 |
+
)
|
516 |
+
with gr.Tab(label="Argilla"):
|
517 |
+
with gr.Row(variant="panel"):
|
518 |
+
dataset_name = gr.Textbox(
|
519 |
+
label="Dataset name",
|
520 |
+
placeholder="dataset_name",
|
521 |
+
value="my-distiset",
|
522 |
+
)
|
523 |
+
with gr.Row(variant="panel"):
|
524 |
+
btn_generate_full_dataset_copy = gr.Button(
|
525 |
+
value="Generate", variant="primary", scale=2
|
526 |
+
)
|
527 |
+
btn_generate_and_push_to_argilla = gr.Button(
|
528 |
+
value="Generate and Push to Argilla", variant="primary", scale=2
|
529 |
+
)
|
530 |
+
btn_push_to_argilla = gr.Button(
|
531 |
+
value="Push to Argilla", variant="primary", scale=2
|
532 |
+
)
|
533 |
with gr.Row():
|
534 |
final_dataset = gr.Dataframe(
|
535 |
value=DEFAULT_DATASETS[0],
|
|
|
541 |
with gr.Row():
|
542 |
success_message = gr.Markdown(visible=False)
|
543 |
|
544 |
+
def show_success_message_argilla():
|
545 |
+
client = get_argilla_client()
|
546 |
+
argilla_api_url = client.api_url
|
547 |
+
return gr.Markdown(
|
548 |
+
value=f"""
|
549 |
+
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
|
550 |
+
<h3 style="color: #2e7d32; margin: 0;">Dataset Published Successfully!</h3>
|
551 |
+
<p style="margin-top: 0.5em;">
|
552 |
+
Your dataset is now available at:
|
553 |
+
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
554 |
+
{argilla_api_url}
|
555 |
+
</a>
|
556 |
+
Here are some docs to help you:
|
557 |
+
• <a href="https://docs.argilla.io/latest/getting_started/quickstart/#sign-in-into-the-argilla-ui" target="_blank">Login with OAuth</a>
|
558 |
+
• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">Curate your data</a>
|
559 |
+
• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">Export your data</a>
|
560 |
+
</p>
|
561 |
+
</div>
|
562 |
+
""",
|
563 |
+
visible=True,
|
564 |
+
)
|
565 |
+
|
566 |
+
def show_success_message_hub(org_name, repo_name):
|
567 |
return gr.Markdown(
|
568 |
value=f"""
|
569 |
<div style="padding: 1em; background-color: #e6f3e6; border-radius: 5px; margin-top: 1em;">
|
|
|
576 |
</a>
|
577 |
</p>
|
578 |
</div>
|
579 |
+
""",
|
580 |
visible=True,
|
581 |
)
|
582 |
|
|
|
605 |
inputs=[sample_dataset],
|
606 |
outputs=[final_dataset],
|
607 |
)
|
608 |
+
gr.on(
|
609 |
+
triggers=[
|
610 |
+
btn_generate_full_dataset.click,
|
611 |
+
btn_generate_full_dataset_copy.click,
|
612 |
+
],
|
613 |
+
fn=hide_success_message,
|
614 |
+
outputs=[success_message],
|
615 |
+
).then(
|
616 |
+
fn=generate_dataset,
|
617 |
+
inputs=[system_prompt, num_turns, num_rows],
|
618 |
+
outputs=[final_dataset],
|
619 |
+
show_progress=True,
|
620 |
+
)
|
621 |
|
622 |
+
btn_generate_and_push_to_argilla.click(
|
623 |
fn=hide_success_message,
|
624 |
outputs=[success_message],
|
625 |
).then(
|
|
|
627 |
inputs=[system_prompt, num_turns, num_rows],
|
628 |
outputs=[final_dataset],
|
629 |
show_progress=True,
|
630 |
+
).then(
|
631 |
+
fn=push_to_argilla,
|
632 |
+
inputs=[final_dataset, dataset_name],
|
633 |
+
outputs=[final_dataset],
|
634 |
+
show_progress=True,
|
635 |
+
).success(
|
636 |
+
fn=show_success_message_argilla,
|
637 |
+
inputs=[],
|
638 |
+
outputs=[success_message],
|
639 |
)
|
640 |
|
641 |
btn_generate_and_push_to_hub.click(
|
|
|
657 |
outputs=[],
|
658 |
show_progress=True,
|
659 |
).success(
|
660 |
+
fn=show_success_message_hub,
|
661 |
inputs=[org_name, repo_name],
|
662 |
outputs=[success_message],
|
663 |
)
|
|
|
676 |
outputs=[],
|
677 |
show_progress=True,
|
678 |
).success(
|
679 |
+
fn=show_success_message_hub,
|
680 |
inputs=[org_name, repo_name],
|
681 |
outputs=[success_message],
|
682 |
)
|
683 |
|
684 |
+
btn_push_to_argilla.click(
|
685 |
+
fn=hide_success_message,
|
686 |
+
outputs=[success_message],
|
687 |
+
).then(
|
688 |
+
fn=push_to_argilla,
|
689 |
+
inputs=[final_dataset, dataset_name],
|
690 |
+
outputs=[final_dataset],
|
691 |
+
show_progress=True,
|
692 |
+
).success(
|
693 |
+
fn=show_success_message_argilla,
|
694 |
+
inputs=[],
|
695 |
+
outputs=[success_message],
|
696 |
+
)
|
697 |
+
|
698 |
system_prompt.change(
|
699 |
fn=generate_pipeline_code,
|
700 |
inputs=[system_prompt, num_turns, num_rows],
|
src/distilabel_dataset_generator/pipelines/embeddings.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from sentence_transformers import SentenceTransformer
|
4 |
+
from sentence_transformers.models import StaticEmbedding
|
5 |
+
|
6 |
+
# Initialize a StaticEmbedding module
|
7 |
+
static_embedding = StaticEmbedding.from_model2vec("minishlab/M2V_base_output")
|
8 |
+
model = SentenceTransformer(modules=[static_embedding])
|
9 |
+
|
10 |
+
|
11 |
+
def get_embeddings(texts: List[str]) -> List[List[float]]:
|
12 |
+
return [embedding.tolist() for embedding in model.encode(texts)]
|
13 |
+
|
14 |
+
|
15 |
+
def get_sentence_embedding_dimensions() -> int:
|
16 |
+
return model.get_sentence_embedding_dimension()
|
src/distilabel_dataset_generator/utils.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
from gradio.oauth import (
|
5 |
OAUTH_CLIENT_ID,
|
@@ -81,3 +82,12 @@ def swap_visibilty(oauth_token: OAuthToken = None):
|
|
81 |
return gr.update(elem_classes=["main_ui_logged_in"])
|
82 |
else:
|
83 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
|
3 |
+
import argilla as rg
|
4 |
import gradio as gr
|
5 |
from gradio.oauth import (
|
6 |
OAUTH_CLIENT_ID,
|
|
|
82 |
return gr.update(elem_classes=["main_ui_logged_in"])
|
83 |
else:
|
84 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
85 |
+
|
86 |
+
|
87 |
+
def get_argilla_client():
|
88 |
+
return rg.Argilla(
|
89 |
+
api_url=os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
90 |
+
or os.getenv("ARGILLA_API_URL"),
|
91 |
+
api_key=os.getenv("ARGILLA_API_KEY_SDG_REVIEWER")
|
92 |
+
or os.getenv("ARGILLA_API_KEY"),
|
93 |
+
)
|