Commit
·
b445efe
1
Parent(s):
35eb40e
feat: Add validation to check if data exists before pushing/generating
Browse files
src/distilabel_dataset_generator/apps/sft.py
CHANGED
@@ -267,17 +267,19 @@ def push_to_argilla(
|
|
267 |
),
|
268 |
],
|
269 |
questions=[
|
270 |
-
rg.
|
271 |
-
name="
|
272 |
-
description="The
|
|
|
273 |
),
|
274 |
],
|
275 |
metadata=[
|
276 |
rg.IntegerMetadataProperty(
|
277 |
-
name="
|
278 |
),
|
279 |
rg.IntegerMetadataProperty(
|
280 |
-
name="
|
|
|
281 |
),
|
282 |
],
|
283 |
vectors=[
|
@@ -288,25 +290,28 @@ def push_to_argilla(
|
|
288 |
],
|
289 |
guidelines="Please review the conversation and provide a score for the assistant's response.",
|
290 |
)
|
291 |
-
import pdb
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
296 |
)
|
297 |
dataframe["messages_embeddings"] = get_embeddings(
|
298 |
dataframe["messages"].apply(
|
299 |
lambda x: " ".join([y["content"] for y in x])
|
300 |
)
|
301 |
)
|
302 |
-
dataframe["correct_response"] = dataframe["messages"].apply(
|
303 |
-
lambda x: x[-1]["content"]
|
304 |
-
)
|
305 |
-
dataframe["response_length"] = dataframe["correct_response"].apply(len)
|
306 |
-
dataframe["messages"] = dataframe["messages"].apply(lambda x: x[:-1])
|
307 |
else:
|
308 |
settings = rg.Settings(
|
309 |
fields=[
|
|
|
|
|
|
|
|
|
|
|
310 |
rg.TextField(
|
311 |
name="prompt",
|
312 |
description="The prompt used for the conversation",
|
@@ -317,13 +322,10 @@ def push_to_argilla(
|
|
317 |
),
|
318 |
],
|
319 |
questions=[
|
320 |
-
rg.
|
321 |
-
name="
|
322 |
-
description="The
|
323 |
-
|
324 |
-
rg.TextQuestion(
|
325 |
-
name="correct_completion",
|
326 |
-
description="The corrected completion from the assistant",
|
327 |
),
|
328 |
],
|
329 |
metadata=[
|
@@ -342,22 +344,20 @@ def push_to_argilla(
|
|
342 |
],
|
343 |
guidelines="Please review the conversation and correct the prompt and completion where needed.",
|
344 |
)
|
345 |
-
dataframe["correct_prompt"] = dataframe["prompt"]
|
346 |
-
dataframe["correct_completion"] = dataframe["completion"]
|
347 |
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
|
348 |
dataframe["completion_length"] = dataframe["completion"].apply(len)
|
349 |
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
|
350 |
|
351 |
progress(0.5, desc="Creating dataset")
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
progress(0.7, desc="Pushing dataset to Argilla")
|
362 |
hf_dataset = Dataset.from_pandas(dataframe)
|
363 |
rg_dataset.records.log(records=hf_dataset)
|
@@ -367,6 +367,23 @@ def push_to_argilla(
|
|
367 |
return original_dataframe
|
368 |
|
369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
def upload_pipeline_code(
|
371 |
pipeline_code,
|
372 |
org_name,
|
@@ -469,7 +486,7 @@ with gr.Blocks(
|
|
469 |
# Add a header for the full dataset generation section
|
470 |
gr.Markdown("## Generate full dataset")
|
471 |
gr.Markdown(
|
472 |
-
"Once you're satisfied with the sample, generate a larger dataset and push it to the Hub."
|
473 |
)
|
474 |
|
475 |
with gr.Column() as push_to_hub_ui:
|
@@ -489,22 +506,31 @@ with gr.Blocks(
|
|
489 |
maximum=500,
|
490 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
491 |
)
|
|
|
492 |
with gr.Tab(label="Argilla"):
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
508 |
)
|
509 |
with gr.Tab("Hugging Face Hub"):
|
510 |
with gr.Row(variant="panel"):
|
@@ -554,10 +580,10 @@ with gr.Blocks(
|
|
554 |
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
555 |
{argilla_api_url}
|
556 |
</a>
|
557 |
-
Here are some docs to help you:
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
</p>
|
562 |
</div>
|
563 |
""",
|
@@ -621,14 +647,19 @@ with gr.Blocks(
|
|
621 |
)
|
622 |
|
623 |
btn_generate_and_push_to_argilla.click(
|
|
|
|
|
|
|
|
|
|
|
624 |
fn=hide_success_message,
|
625 |
outputs=[success_message],
|
626 |
-
).
|
627 |
fn=generate_dataset,
|
628 |
inputs=[system_prompt, num_turns, num_rows],
|
629 |
outputs=[final_dataset],
|
630 |
show_progress=True,
|
631 |
-
).
|
632 |
fn=push_to_argilla,
|
633 |
inputs=[final_dataset, dataset_name],
|
634 |
outputs=[final_dataset],
|
@@ -685,7 +716,12 @@ with gr.Blocks(
|
|
685 |
btn_push_to_argilla.click(
|
686 |
fn=hide_success_message,
|
687 |
outputs=[success_message],
|
688 |
-
).
|
|
|
|
|
|
|
|
|
|
|
689 |
fn=push_to_argilla,
|
690 |
inputs=[final_dataset, dataset_name],
|
691 |
outputs=[final_dataset],
|
|
|
267 |
),
|
268 |
],
|
269 |
questions=[
|
270 |
+
rg.RatingQuestion(
|
271 |
+
name="rating",
|
272 |
+
description="The rating of the conversation",
|
273 |
+
values=list(range(1, 6)),
|
274 |
),
|
275 |
],
|
276 |
metadata=[
|
277 |
rg.IntegerMetadataProperty(
|
278 |
+
name="user_message_length", title="User Message Length"
|
279 |
),
|
280 |
rg.IntegerMetadataProperty(
|
281 |
+
name="assistant_message_length",
|
282 |
+
title="Assistant Message Length",
|
283 |
),
|
284 |
],
|
285 |
vectors=[
|
|
|
290 |
],
|
291 |
guidelines="Please review the conversation and provide a score for the assistant's response.",
|
292 |
)
|
|
|
293 |
|
294 |
+
dataframe["user_message_length"] = dataframe["messages"].apply(
|
295 |
+
lambda x: sum([len(y["content"]) for y in x if y["role"] == "user"])
|
296 |
+
)
|
297 |
+
dataframe["assistant_message_length"] = dataframe["messages"].apply(
|
298 |
+
lambda x: sum(
|
299 |
+
[len(y["content"]) for y in x if y["role"] == "assistant"]
|
300 |
+
)
|
301 |
)
|
302 |
dataframe["messages_embeddings"] = get_embeddings(
|
303 |
dataframe["messages"].apply(
|
304 |
lambda x: " ".join([y["content"] for y in x])
|
305 |
)
|
306 |
)
|
|
|
|
|
|
|
|
|
|
|
307 |
else:
|
308 |
settings = rg.Settings(
|
309 |
fields=[
|
310 |
+
rg.TextField(
|
311 |
+
name="system_prompt",
|
312 |
+
description="The system prompt used for the conversation",
|
313 |
+
required=False,
|
314 |
+
),
|
315 |
rg.TextField(
|
316 |
name="prompt",
|
317 |
description="The prompt used for the conversation",
|
|
|
322 |
),
|
323 |
],
|
324 |
questions=[
|
325 |
+
rg.RatingQuestion(
|
326 |
+
name="rating",
|
327 |
+
description="The rating of the conversation",
|
328 |
+
values=list(range(1, 6)),
|
|
|
|
|
|
|
329 |
),
|
330 |
],
|
331 |
metadata=[
|
|
|
344 |
],
|
345 |
guidelines="Please review the conversation and correct the prompt and completion where needed.",
|
346 |
)
|
|
|
|
|
347 |
dataframe["prompt_length"] = dataframe["prompt"].apply(len)
|
348 |
dataframe["completion_length"] = dataframe["completion"].apply(len)
|
349 |
dataframe["prompt_embeddings"] = get_embeddings(dataframe["prompt"])
|
350 |
|
351 |
progress(0.5, desc="Creating dataset")
|
352 |
+
rg_dataset = client.datasets(name=dataset_name, workspace=rg_user.username)
|
353 |
+
if rg_dataset is None:
|
354 |
+
rg_dataset = rg.Dataset(
|
355 |
+
name=dataset_name,
|
356 |
+
workspace=rg_user.username,
|
357 |
+
settings=settings,
|
358 |
+
client=client,
|
359 |
+
)
|
360 |
+
rg_dataset = rg_dataset.create()
|
361 |
progress(0.7, desc="Pushing dataset to Argilla")
|
362 |
hf_dataset = Dataset.from_pandas(dataframe)
|
363 |
rg_dataset.records.log(records=hf_dataset)
|
|
|
367 |
return original_dataframe
|
368 |
|
369 |
|
370 |
+
def validate_argilla_dataset_name(
|
371 |
+
dataset_name: str,
|
372 |
+
final_dataset: pd.DataFrame,
|
373 |
+
oauth_token: Union[OAuthToken, None] = None,
|
374 |
+
progress=gr.Progress(),
|
375 |
+
) -> str:
|
376 |
+
progress(0, desc="Validating dataset configuration")
|
377 |
+
hf_user = HfApi().whoami(token=oauth_token.token)["name"]
|
378 |
+
client = get_argilla_client()
|
379 |
+
if dataset_name is None or dataset_name == "":
|
380 |
+
raise gr.Error("Dataset name is required")
|
381 |
+
dataset = client.datasets(name=dataset_name, workspace=hf_user)
|
382 |
+
if dataset:
|
383 |
+
raise gr.Error(f"Dataset {dataset_name} already exists")
|
384 |
+
return final_dataset
|
385 |
+
|
386 |
+
|
387 |
def upload_pipeline_code(
|
388 |
pipeline_code,
|
389 |
org_name,
|
|
|
486 |
# Add a header for the full dataset generation section
|
487 |
gr.Markdown("## Generate full dataset")
|
488 |
gr.Markdown(
|
489 |
+
"Once you're satisfied with the sample, generate a larger dataset and push it to Argilla or the Hugging Face Hub."
|
490 |
)
|
491 |
|
492 |
with gr.Column() as push_to_hub_ui:
|
|
|
506 |
maximum=500,
|
507 |
info="The number of rows in the dataset. Note that you are able to generate more rows at once but that this will take time.",
|
508 |
)
|
509 |
+
|
510 |
with gr.Tab(label="Argilla"):
|
511 |
+
if get_argilla_client():
|
512 |
+
with gr.Row(variant="panel"):
|
513 |
+
dataset_name = gr.Textbox(
|
514 |
+
label="Dataset name",
|
515 |
+
placeholder="dataset_name",
|
516 |
+
value="my-distiset",
|
517 |
+
)
|
518 |
+
|
519 |
+
with gr.Row(variant="panel"):
|
520 |
+
btn_generate_full_dataset_copy = gr.Button(
|
521 |
+
value="Generate", variant="primary", scale=2
|
522 |
+
)
|
523 |
+
btn_generate_and_push_to_argilla = gr.Button(
|
524 |
+
value="Generate and Push to Argilla",
|
525 |
+
variant="primary",
|
526 |
+
scale=2,
|
527 |
+
)
|
528 |
+
btn_push_to_argilla = gr.Button(
|
529 |
+
value="Push to Argilla", variant="primary", scale=2
|
530 |
+
)
|
531 |
+
else:
|
532 |
+
gr.Markdown(
|
533 |
+
"Please add `ARGILLA_API_URL` and `ARGILLA_API_KEY` to use Argilla."
|
534 |
)
|
535 |
with gr.Tab("Hugging Face Hub"):
|
536 |
with gr.Row(variant="panel"):
|
|
|
580 |
<a href="{argilla_api_url}" target="_blank" style="color: #1565c0; text-decoration: none;">
|
581 |
{argilla_api_url}
|
582 |
</a>
|
583 |
+
<br>Unfamiliar with Argilla? Here are some docs to help you get started:
|
584 |
+
<br>• <a href="https://docs.argilla.io/latest/getting_started/quickstart/#sign-in-into-the-argilla-ui" target="_blank">Login with OAuth</a>
|
585 |
+
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/annotate/" target="_blank">Curate your data</a>
|
586 |
+
<br>• <a href="https://docs.argilla.io/latest/how_to_guides/import_export/" target="_blank">Export your data</a>
|
587 |
</p>
|
588 |
</div>
|
589 |
""",
|
|
|
647 |
)
|
648 |
|
649 |
btn_generate_and_push_to_argilla.click(
|
650 |
+
fn=validate_argilla_dataset_name,
|
651 |
+
inputs=[dataset_name, final_dataset],
|
652 |
+
outputs=[final_dataset],
|
653 |
+
show_progress=True,
|
654 |
+
).success(
|
655 |
fn=hide_success_message,
|
656 |
outputs=[success_message],
|
657 |
+
).success(
|
658 |
fn=generate_dataset,
|
659 |
inputs=[system_prompt, num_turns, num_rows],
|
660 |
outputs=[final_dataset],
|
661 |
show_progress=True,
|
662 |
+
).success(
|
663 |
fn=push_to_argilla,
|
664 |
inputs=[final_dataset, dataset_name],
|
665 |
outputs=[final_dataset],
|
|
|
716 |
btn_push_to_argilla.click(
|
717 |
fn=hide_success_message,
|
718 |
outputs=[success_message],
|
719 |
+
).success(
|
720 |
+
fn=validate_argilla_dataset_name,
|
721 |
+
inputs=[dataset_name, final_dataset],
|
722 |
+
outputs=[final_dataset],
|
723 |
+
show_progress=True,
|
724 |
+
).success(
|
725 |
fn=push_to_argilla,
|
726 |
inputs=[final_dataset, dataset_name],
|
727 |
outputs=[final_dataset],
|
src/distilabel_dataset_generator/pipelines/sft.py
CHANGED
@@ -189,7 +189,7 @@ with Pipeline(name="sft") as pipeline:
|
|
189 |
tokenizer_id=MODEL,
|
190 |
magpie_pre_query_template="llama3",
|
191 |
generation_kwargs={{
|
192 |
-
"temperature":
|
193 |
"do_sample": True,
|
194 |
"max_new_tokens": 2048,
|
195 |
"stop_sequences": {_STOP_SEQUENCES}
|
@@ -231,7 +231,7 @@ def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
|
231 |
api_key=_get_next_api_key(),
|
232 |
magpie_pre_query_template="llama3",
|
233 |
generation_kwargs={
|
234 |
-
"temperature":
|
235 |
"do_sample": True,
|
236 |
"max_new_tokens": 256 if is_sample else 512,
|
237 |
"stop_sequences": _STOP_SEQUENCES,
|
@@ -250,7 +250,7 @@ def get_magpie_generator(num_turns, num_rows, system_prompt, is_sample):
|
|
250 |
api_key=_get_next_api_key(),
|
251 |
magpie_pre_query_template="llama3",
|
252 |
generation_kwargs={
|
253 |
-
"temperature":
|
254 |
"do_sample": True,
|
255 |
"max_new_tokens": 256 if is_sample else 1024,
|
256 |
"stop_sequences": _STOP_SEQUENCES,
|
|
|
189 |
tokenizer_id=MODEL,
|
190 |
magpie_pre_query_template="llama3",
|
191 |
generation_kwargs={{
|
192 |
+
"temperature": 1,
|
193 |
"do_sample": True,
|
194 |
"max_new_tokens": 2048,
|
195 |
"stop_sequences": {_STOP_SEQUENCES}
|
|
|
231 |
api_key=_get_next_api_key(),
|
232 |
magpie_pre_query_template="llama3",
|
233 |
generation_kwargs={
|
234 |
+
"temperature": 1,
|
235 |
"do_sample": True,
|
236 |
"max_new_tokens": 256 if is_sample else 512,
|
237 |
"stop_sequences": _STOP_SEQUENCES,
|
|
|
250 |
api_key=_get_next_api_key(),
|
251 |
magpie_pre_query_template="llama3",
|
252 |
generation_kwargs={
|
253 |
+
"temperature": 1,
|
254 |
"do_sample": True,
|
255 |
"max_new_tokens": 256 if is_sample else 1024,
|
256 |
"stop_sequences": _STOP_SEQUENCES,
|
src/distilabel_dataset_generator/utils.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
|
3 |
import argilla as rg
|
4 |
import gradio as gr
|
@@ -84,10 +85,13 @@ def swap_visibilty(oauth_token: OAuthToken = None):
|
|
84 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
85 |
|
86 |
|
87 |
-
def get_argilla_client():
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from typing import Union
|
3 |
|
4 |
import argilla as rg
|
5 |
import gradio as gr
|
|
|
85 |
return gr.update(elem_classes=["main_ui_logged_out"])
|
86 |
|
87 |
|
88 |
+
def get_argilla_client() -> Union[rg.Argilla, None]:
|
89 |
+
try:
|
90 |
+
return rg.Argilla(
|
91 |
+
api_url=os.getenv("ARGILLA_API_URL_SDG_REVIEWER")
|
92 |
+
or os.getenv("ARGILLA_API_URL"),
|
93 |
+
api_key=os.getenv("ARGILLA_API_KEY_SDG_REVIEWER")
|
94 |
+
or os.getenv("ARGILLA_API_KEY"),
|
95 |
+
)
|
96 |
+
except Exception:
|
97 |
+
return None
|