File size: 7,415 Bytes
5edd591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from functools import partial
from pathlib import Path
from typing import Iterable, Callable
import spacy
from spacy.training import Example
from spacy.tokens import DocBin, Doc

# make the factory work
# from scripts.rel_pipe import make_relation_extractor

# make the config work
# from scripts.rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors
# from scripts.custom_comps.SpanCat_extention import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3, build_mean_max_reducer4

from typing import List, Tuple, cast
from thinc.api import Model, with_getitem, chain, list2ragged, Logistic
from thinc.api import Maxout, Linear, concatenate, glorot_uniform_init, PyTorchLSTM
from thinc.api import reduce_mean, reduce_max, reduce_first, reduce_last
from thinc.types import Ragged, Floats2d

from spacy.util import registry
from spacy.tokens import Doc
from spacy.ml.extract_spans import extract_spans

# @registry.layers("spacy.LinearLogistic.v1")
# def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
#     """An output layer for multi-label classification. It uses a linear layer
#     followed by a logistic activation.
#     """
#     return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())


@registry.layers("mean_max_reducer.v1.5")
def build_mean_max_reducer1(hidden_size: int,
                            dropout: float = 0.0) -> Model[Ragged, Floats2d]:
    """Reduce sequences by concatenating their mean and max pooled vectors,
    and then combine the concatenated vectors with a hidden layer.
    """
    return chain(
        concatenate(
            cast(Model[Ragged, Floats2d], reduce_last()),
            cast(Model[Ragged, Floats2d], reduce_first()),
            reduce_mean(),
            reduce_max(),
        ),
        Maxout(nO=hidden_size, normalize=True, dropout=dropout),
    )


@registry.layers("mean_max_reducer.v2")
def build_mean_max_reducer2(hidden_size: int,
                            dropout: float = 0.0) -> Model[Ragged, Floats2d]:
    """Reduce sequences by concatenating their mean and max pooled vectors,
    and then combine the concatenated vectors with a hidden layer.
    """
    return chain(
        concatenate(
            cast(Model[Ragged, Floats2d], reduce_last()),
            cast(Model[Ragged, Floats2d], reduce_first()),
            reduce_mean(),
            reduce_max(),
        ), Maxout(nO=hidden_size, normalize=True, dropout=dropout),
        Maxout(nO=hidden_size, normalize=True, dropout=dropout))


# @registry.layers("mean_max_reducer.v2")
# def build_mean_max_reducer2(hidden_size: int,
#                             depth: int) -> Model[Ragged, Floats2d]:
#     """Reduce sequences by concatenating their mean and max pooled vectors,
#     and then combine the concatenated vectors with a hidden layer.
#     """
#     return chain(
#         concatenate(
#             cast(Model[Ragged, Floats2d], reduce_last()),
#             cast(Model[Ragged, Floats2d], reduce_first()),
#             reduce_mean(),
#             reduce_max(),
#         ), Maxout(nO=hidden_size, normalize=True, dropout=0.0),
#         PyTorchLSTM(nO=64, nI=hidden_size, bi=True, depth=depth, dropout=0.2))


@registry.layers("mean_max_reducer.v3")
def build_mean_max_reducer3(hidden_size: int,
                            maxout_pieces: int = 3,
                            dropout: float = 0.0) -> Model[Ragged, Floats2d]:
    """Reduce sequences by concatenating their mean and max pooled vectors,
    and then combine the concatenated vectors with a hidden layer.
    """
    hidden_size2 = int(hidden_size / 2)
    hidden_size3 = int(hidden_size / 2)
    return chain(
        concatenate(
            cast(Model[Ragged, Floats2d], reduce_last()),
            cast(Model[Ragged, Floats2d], reduce_first()),
            reduce_mean(),
            reduce_max(),
        ),
        Maxout(nO=hidden_size,
               nP=maxout_pieces,
               normalize=True,
               dropout=dropout),
        Maxout(nO=hidden_size2,
               nP=maxout_pieces,
               normalize=True,
               dropout=dropout),
        Maxout(nO=hidden_size3,
               nP=maxout_pieces,
               normalize=True,
               dropout=dropout))


@registry.layers("mean_max_reducer.v3.3")
def build_mean_max_reducer4(hidden_size: int,
                            depth: int) -> Model[Ragged, Floats2d]:
    """Reduce sequences by concatenating their mean and max pooled vectors,
    and then combine the concatenated vectors with a hidden layer.
    """
    hidden_size2 = int(hidden_size / 2)
    hidden_size3 = int(hidden_size / 2)
    return chain(
        concatenate(
            cast(Model[Ragged, Floats2d], reduce_last()),
            cast(Model[Ragged, Floats2d], reduce_first()),
            reduce_mean(),
            reduce_max(),
        ), Maxout(nO=hidden_size, nP=3, normalize=True, dropout=0.0),
        Maxout(nO=hidden_size2, nP=3, normalize=True, dropout=0.0),
        Maxout(nO=hidden_size3, nP=3, normalize=True, dropout=0.0))


@registry.architectures("CustomSpanCategorizer.v2")
def build_spancat_model(
    tok2vec: Model[List[Doc], List[Floats2d]],
    reducer: Model[Ragged, Floats2d],
    scorer: Model[Floats2d, Floats2d],
) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
    """Build a span categorizer model, given a token-to-vector model, a
    reducer model to map the sequence of vectors for each span down to a single
    vector, and a scorer model to map the vectors to probabilities.
    tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
    reducer (Model[Ragged, Floats2d]): The reducer model.
    scorer (Model[Floats2d, Floats2d]): The scorer model.
    """
    model = chain(
        cast(
            Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
            with_getitem(
                0,
                chain(tok2vec,
                      cast(Model[List[Floats2d], Ragged], list2ragged()))),
        ),
        extract_spans(),
        reducer,
        scorer,
    )
    model.set_ref("tok2vec", tok2vec)
    model.set_ref("reducer", reducer)
    model.set_ref("scorer", scorer)
    return model


# @registry.architectures("spacy.SpanCategorizer.v1")
# def build_spancat_model(
#     tok2vec: Model[List[Doc], List[Floats2d]],
#     reducer: Model[Ragged, Floats2d],
#     scorer: Model[Floats2d, Floats2d],
# ) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
#     """Build a span categorizer model, given a token-to-vector model, a
#     reducer model to map the sequence of vectors for each span down to a single
#     vector, and a scorer model to map the vectors to probabilities.
#     tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
#     reducer (Model[Ragged, Floats2d]): The reducer model.
#     scorer (Model[Floats2d, Floats2d]): The scorer model.
#     """
#     model = chain(
#         cast(
#             Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
#             with_getitem(
#                 0,
#                 chain(tok2vec,
#                       cast(Model[List[Floats2d], Ragged], list2ragged()))),
#         ),
#         extract_spans(),
#         reducer,
#         scorer,
#     )
#     model.set_ref("tok2vec", tok2vec)
#     model.set_ref("reducer", reducer)
#     model.set_ref("scorer", scorer)
#     return model