egumasa commited on
Commit
65485b3
·
1 Parent(s): 8b41226

update to dropout model with oversampling

Browse files
Files changed (1) hide show
  1. demo.py +22 -12
demo.py CHANGED
@@ -28,7 +28,8 @@ st.set_page_config(page_title="ENGAGEMENT analyzer (beta ver 0.2)",
28
 
29
  @st.cache(allow_output_mutation=True)
30
  def load_model(spacy_model):
31
- nlp = spacy.load("en_engagement_RoBERTa_context_flz")
 
32
  return (nlp)
33
 
34
 
@@ -115,7 +116,7 @@ TEXT_LIST = [
115
  ]
116
 
117
 
118
- @st.cache
119
  def preprocess(text):
120
  text = re.sub("\n\n", ' &&&&&&&&#&#&#&#&', text)
121
  text = re.sub('\n', ' ', text)
@@ -237,8 +238,6 @@ cc = '<a rel="license" href="http://creativecommons.org/licenses/by-nc/4.0/"><im
237
  st.sidebar.markdown(cc, unsafe_allow_html=True)
238
 
239
  st.header("Engagement Analyzer (beta ver 0.2)")
240
- st.info('Updated on Nov. 18th, 2022')
241
-
242
  st.write(
243
  "Engagement Analyzer is a free tool that analyzes English texts for rhetorical strategies under the Engagement system framework (Martin & White, 2005). Martin and White (2005) propose two basic stance-taking strategies: expansion and contraction, which are in turn divided into finer-grained rhetorical strategies. The current tool allows you to analyze texts for a total of nine rhetorical strategies. The definitions of each category label can be found from the side bar"
244
  )
@@ -253,6 +252,14 @@ with st.expander("See more explanation"):
253
 
254
  """)
255
 
 
 
 
 
 
 
 
 
256
  with st.form("my_form"):
257
 
258
  st.subheader("Option 1: selecting example text from list")
@@ -310,14 +317,17 @@ visualize_spans(doc,
310
  'start': TPL_SPAN_START,
311
  },
312
  "colors": {
313
- "ENTERTAIN": "#82b74b",
314
- "DENY": '#c94c4c',
315
- "COUNTER": "#eea29a",
316
- "PRONOUNCE": "#92a8d1",
317
- "ENDORSE": "#034f84",
318
- "CITATION": "#b2b2b2",
319
- "MONOGLOSS": "#3e4444",
320
- "ATTRIBUTE": "#f7786b"
 
 
 
321
  },
322
  })
323
 
 
28
 
29
  @st.cache(allow_output_mutation=True)
30
  def load_model(spacy_model):
31
+ # nlp = spacy.load("en_engagement_RoBERTa_context_flz")
32
+ nlp = spacy.load("en_engagement_spl_RoBERTa_acad_max1_do02")
33
  return (nlp)
34
 
35
 
 
116
  ]
117
 
118
 
119
+ @st.cache(suppress_st_warning=True)
120
  def preprocess(text):
121
  text = re.sub("\n\n", ' &&&&&&&&#&#&#&#&', text)
122
  text = re.sub('\n', ' ', text)
 
238
  st.sidebar.markdown(cc, unsafe_allow_html=True)
239
 
240
  st.header("Engagement Analyzer (beta ver 0.2)")
 
 
241
  st.write(
242
  "Engagement Analyzer is a free tool that analyzes English texts for rhetorical strategies under the Engagement system framework (Martin & White, 2005). Martin and White (2005) propose two basic stance-taking strategies: expansion and contraction, which are in turn divided into finer-grained rhetorical strategies. The current tool allows you to analyze texts for a total of nine rhetorical strategies. The definitions of each category label can be found from the side bar"
243
  )
 
252
 
253
  """)
254
 
255
+ st.info('''Updated on Dec. 4th, 2022\n
256
+ The current version was trained on 1,333 sentences and tested on 323 sentences. It achieved the following benchmark:
257
+ - Micro F1 = 68.94
258
+ - Micro Precision = 71.17
259
+ - Micro Recall = 66.84
260
+ I expect that the model's performance improves as the annotated dataset gets larger.
261
+ ''')
262
+
263
  with st.form("my_form"):
264
 
265
  st.subheader("Option 1: selecting example text from list")
 
317
  'start': TPL_SPAN_START,
318
  },
319
  "colors": {
320
+ "ENTERTAIN": "#73C6B6",
321
+ "DENY": '#CD6155',
322
+ "COUNTER": "#D35400",
323
+ "PRONOUNCE": "#2ECC71",
324
+ "ENDORSE": "#A569BD",
325
+ "CONCUR": "#F39C12",
326
+ "CITATION": "#F8C471",
327
+ "SOURCES": "#F7DC6F",
328
+ "MONOGLOSS": "#85929E",
329
+ "ATTRIBUTE": "#85C1E9",
330
+ "JUSTIFYING": "#2ECC71",
331
  },
332
  })
333