engagement-analyzer-demo / pipeline /custom_functions.py
egumasa's picture
new UI
a937724
from functools import partial
from pathlib import Path
from typing import Iterable, Callable
import spacy
from spacy.training import Example
from spacy.tokens import DocBin, Doc
# make the factory work
# from scripts.rel_pipe import make_relation_extractor
# make the config work
# from scripts.rel_model import create_relation_model, create_classification_layer, create_instances, create_tensors
# from scripts.custom_comps.SpanCat_extention import build_mean_max_reducer1, build_mean_max_reducer2, build_mean_max_reducer3, build_mean_max_reducer4
from typing import List, Tuple, cast
from thinc.api import Model, with_getitem, chain, list2ragged, Logistic
from thinc.api import Maxout, Linear, concatenate, glorot_uniform_init, PyTorchLSTM
from thinc.api import reduce_mean, reduce_max, reduce_first, reduce_last
from thinc.types import Ragged, Floats2d
from spacy.util import registry
from spacy.tokens import Doc
from spacy.ml.extract_spans import extract_spans
# @registry.layers("spacy.LinearLogistic.v1")
# def build_linear_logistic(nO=None, nI=None) -> Model[Floats2d, Floats2d]:
# """An output layer for multi-label classification. It uses a linear layer
# followed by a logistic activation.
# """
# return chain(Linear(nO=nO, nI=nI, init_W=glorot_uniform_init), Logistic())
@registry.layers("mean_max_reducer.v1.5")
def build_mean_max_reducer1(hidden_size: int,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
),
Maxout(nO=hidden_size, normalize=True, dropout=dropout),
)
@registry.layers("mean_max_reducer.v2")
def build_mean_max_reducer2(hidden_size: int,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
), Maxout(nO=hidden_size, normalize=True, dropout=dropout),
Maxout(nO=hidden_size, normalize=True, dropout=dropout))
# @registry.layers("mean_max_reducer.v2")
# def build_mean_max_reducer2(hidden_size: int,
# depth: int) -> Model[Ragged, Floats2d]:
# """Reduce sequences by concatenating their mean and max pooled vectors,
# and then combine the concatenated vectors with a hidden layer.
# """
# return chain(
# concatenate(
# cast(Model[Ragged, Floats2d], reduce_last()),
# cast(Model[Ragged, Floats2d], reduce_first()),
# reduce_mean(),
# reduce_max(),
# ), Maxout(nO=hidden_size, normalize=True, dropout=0.0),
# PyTorchLSTM(nO=64, nI=hidden_size, bi=True, depth=depth, dropout=0.2))
@registry.layers("mean_max_reducer.v3")
def build_mean_max_reducer3(hidden_size: int,
maxout_pieces: int = 3,
dropout: float = 0.0) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
hidden_size2 = int(hidden_size / 2)
hidden_size3 = int(hidden_size / 2)
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
),
Maxout(nO=hidden_size,
nP=maxout_pieces,
normalize=True,
dropout=dropout),
Maxout(nO=hidden_size2,
nP=maxout_pieces,
normalize=True,
dropout=dropout),
Maxout(nO=hidden_size3,
nP=maxout_pieces,
normalize=True,
dropout=dropout))
@registry.layers("mean_max_reducer.v3.3")
def build_mean_max_reducer4(hidden_size: int,
depth: int) -> Model[Ragged, Floats2d]:
"""Reduce sequences by concatenating their mean and max pooled vectors,
and then combine the concatenated vectors with a hidden layer.
"""
hidden_size2 = int(hidden_size / 2)
hidden_size3 = int(hidden_size / 2)
return chain(
concatenate(
cast(Model[Ragged, Floats2d], reduce_last()),
cast(Model[Ragged, Floats2d], reduce_first()),
reduce_mean(),
reduce_max(),
), Maxout(nO=hidden_size, nP=3, normalize=True, dropout=0.0),
Maxout(nO=hidden_size2, nP=3, normalize=True, dropout=0.0),
Maxout(nO=hidden_size3, nP=3, normalize=True, dropout=0.0))
@registry.architectures("CustomSpanCategorizer.v2")
def build_spancat_model(
tok2vec: Model[List[Doc], List[Floats2d]],
reducer: Model[Ragged, Floats2d],
scorer: Model[Floats2d, Floats2d],
) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
"""Build a span categorizer model, given a token-to-vector model, a
reducer model to map the sequence of vectors for each span down to a single
vector, and a scorer model to map the vectors to probabilities.
tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
reducer (Model[Ragged, Floats2d]): The reducer model.
scorer (Model[Floats2d, Floats2d]): The scorer model.
"""
model = chain(
cast(
Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
with_getitem(
0,
chain(tok2vec,
cast(Model[List[Floats2d], Ragged], list2ragged()))),
),
extract_spans(),
reducer,
scorer,
)
model.set_ref("tok2vec", tok2vec)
model.set_ref("reducer", reducer)
model.set_ref("scorer", scorer)
return model
# @registry.architectures("spacy.SpanCategorizer.v1")
# def build_spancat_model(
# tok2vec: Model[List[Doc], List[Floats2d]],
# reducer: Model[Ragged, Floats2d],
# scorer: Model[Floats2d, Floats2d],
# ) -> Model[Tuple[List[Doc], Ragged], Floats2d]:
# """Build a span categorizer model, given a token-to-vector model, a
# reducer model to map the sequence of vectors for each span down to a single
# vector, and a scorer model to map the vectors to probabilities.
# tok2vec (Model[List[Doc], List[Floats2d]]): The tok2vec model.
# reducer (Model[Ragged, Floats2d]): The reducer model.
# scorer (Model[Floats2d, Floats2d]): The scorer model.
# """
# model = chain(
# cast(
# Model[Tuple[List[Doc], Ragged], Tuple[Ragged, Ragged]],
# with_getitem(
# 0,
# chain(tok2vec,
# cast(Model[List[Floats2d], Ragged], list2ragged()))),
# ),
# extract_spans(),
# reducer,
# scorer,
# )
# model.set_ref("tok2vec", tok2vec)
# model.set_ref("reducer", reducer)
# model.set_ref("scorer", scorer)
# return model