|
|
|
|
|
import gradio as gr |
|
import PIL.Image |
|
import torch |
|
import torchvision.transforms.functional as TF |
|
|
|
from model import Model |
|
from utils import ( |
|
DEFAULT_STYLE_NAME, |
|
MAX_SEED, |
|
STYLE_NAMES, |
|
apply_style, |
|
randomize_seed_fn, |
|
) |
|
|
|
|
|
def create_demo(model: Model) -> gr.Blocks: |
|
def run( |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
style_name: str = DEFAULT_STYLE_NAME, |
|
num_steps: int = 25, |
|
guidance_scale: float = 5, |
|
adapter_conditioning_scale: float = 0.8, |
|
adapter_conditioning_factor: float = 0.8, |
|
seed: int = 0, |
|
progress=gr.Progress(track_tqdm=True), |
|
) -> PIL.Image.Image: |
|
image = image.convert("RGB") |
|
image = TF.to_tensor(image) > 0.5 |
|
image = TF.to_pil_image(image.to(torch.float32)) |
|
|
|
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
return model.run( |
|
image=image, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
adapter_name="sketch", |
|
num_inference_steps=num_steps, |
|
guidance_scale=guidance_scale, |
|
adapter_conditioning_scale=adapter_conditioning_scale, |
|
adapter_conditioning_factor=adapter_conditioning_factor, |
|
seed=seed, |
|
apply_preprocess=False, |
|
)[1] |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
image = gr.Image( |
|
source="canvas", |
|
tool="sketch", |
|
type="pil", |
|
image_mode="L", |
|
invert_colors=True, |
|
shape=(1024, 1024), |
|
brush_radius=4, |
|
height=600, |
|
) |
|
prompt = gr.Textbox(label="Prompt") |
|
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", |
|
) |
|
num_steps = gr.Slider( |
|
label="Number of steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=25, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=10.0, |
|
step=0.1, |
|
value=5, |
|
) |
|
adapter_conditioning_scale = gr.Slider( |
|
label="Adapter conditioning scale", |
|
minimum=0.5, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
) |
|
adapter_conditioning_factor = gr.Slider( |
|
label="Adapter conditioning factor", |
|
info="Fraction of timesteps for which adapter should be applied", |
|
minimum=0.5, |
|
maximum=1, |
|
step=0.1, |
|
value=0.8, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Column(): |
|
result = gr.Image(label="Result", height=600) |
|
|
|
inputs = [ |
|
image, |
|
prompt, |
|
negative_prompt, |
|
style, |
|
num_steps, |
|
guidance_scale, |
|
adapter_conditioning_scale, |
|
adapter_conditioning_factor, |
|
seed, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
negative_prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
model = Model("sketch") |
|
demo = create_demo(model) |
|
demo.queue(max_size=20).launch() |