|
|
|
|
|
import os |
|
|
|
import gradio as gr |
|
import PIL.Image |
|
from diffusers.utils import load_image |
|
|
|
from model import ADAPTER_NAMES, Model |
|
from utils import ( |
|
DEFAULT_STYLE_NAME, |
|
MAX_SEED, |
|
STYLE_NAMES, |
|
apply_style, |
|
randomize_seed_fn, |
|
) |
|
|
|
CACHE_EXAMPLES = os.environ.get("CACHE_EXAMPLES") == "1" |
|
|
|
|
|
def create_demo(model: Model) -> gr.Blocks: |
|
def run( |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
adapter_name: str, |
|
style_name: str = DEFAULT_STYLE_NAME, |
|
num_inference_steps: int = 30, |
|
guidance_scale: float = 5.0, |
|
adapter_conditioning_scale: float = 1.0, |
|
adapter_conditioning_factor: float = 1.0, |
|
seed: int = 0, |
|
apply_preprocess: bool = True, |
|
progress=gr.Progress(track_tqdm=True), |
|
) -> list[PIL.Image.Image]: |
|
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt) |
|
|
|
return model.run( |
|
image=image, |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
adapter_name=adapter_name, |
|
num_inference_steps=num_inference_steps, |
|
guidance_scale=guidance_scale, |
|
adapter_conditioning_scale=adapter_conditioning_scale, |
|
adapter_conditioning_factor=adapter_conditioning_factor, |
|
seed=seed, |
|
apply_preprocess=apply_preprocess, |
|
) |
|
|
|
def process_example( |
|
image_url: str, |
|
prompt: str, |
|
adapter_name: str, |
|
guidance_scale: float, |
|
adapter_conditioning_scale: float, |
|
seed: int, |
|
apply_preprocess: bool, |
|
) -> list[PIL.Image.Image]: |
|
image = load_image(image_url) |
|
return run( |
|
image=image, |
|
prompt=prompt, |
|
negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", |
|
adapter_name=adapter_name, |
|
style_name="(No style)", |
|
guidance_scale=guidance_scale, |
|
adapter_conditioning_scale=adapter_conditioning_scale, |
|
seed=seed, |
|
apply_preprocess=apply_preprocess, |
|
) |
|
|
|
examples = [ |
|
|
|
[ |
|
"assets/Mandala_1.jpg", |
|
"a mandala, Indian palace fantasy by Stefan Stankovic in the background, light, HD wallpaper", |
|
"sketch", |
|
7.5, |
|
1.0, |
|
723489435, |
|
True, |
|
], |
|
[ |
|
"assets/org_lin.jpg", |
|
"Ice dragon roar, 4k photo", |
|
"lineart", |
|
7.5, |
|
0.8, |
|
42, |
|
True, |
|
], |
|
[ |
|
"assets/org_mid.jpg", |
|
"A photo of a room, 4k photo, highly detailed", |
|
"depth-midas", |
|
7.5, |
|
1.0, |
|
42, |
|
True, |
|
], |
|
|
|
] |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Group(): |
|
image = gr.Image(label="Input image", type="pil", height=600) |
|
prompt = gr.Textbox(label="Prompt") |
|
with gr.Row(): |
|
adapter_name = gr.Dropdown(label="Adapter name", choices=ADAPTER_NAMES, value=ADAPTER_NAMES[0]) |
|
style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME) |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
apply_preprocess = gr.Checkbox(label="Apply preprocess", value=True) |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", |
|
value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured", |
|
) |
|
num_inference_steps = gr.Slider( |
|
label="Number of steps", |
|
minimum=1, |
|
maximum=Model.MAX_NUM_INFERENCE_STEPS, |
|
step=1, |
|
value=25, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=30.0, |
|
step=0.1, |
|
value=5.0, |
|
) |
|
adapter_conditioning_scale = gr.Slider( |
|
label="Adapter conditioning scale", |
|
minimum=0.5, |
|
maximum=1, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
adapter_conditioning_factor = gr.Slider( |
|
label="Adapter conditioning factor", |
|
info="Fraction of timesteps for which adapter should be applied", |
|
minimum=0.5, |
|
maximum=1.0, |
|
step=0.1, |
|
value=1.0, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=False) |
|
with gr.Column(): |
|
result = gr.Gallery(label="Result", columns=2, height=600, object_fit="scale-down", show_label=False) |
|
|
|
gr.Examples( |
|
examples=examples, |
|
inputs=[ |
|
image, |
|
prompt, |
|
adapter_name, |
|
guidance_scale, |
|
adapter_conditioning_scale, |
|
seed, |
|
apply_preprocess, |
|
], |
|
outputs=result, |
|
fn=process_example, |
|
cache_examples=CACHE_EXAMPLES, |
|
) |
|
|
|
inputs = [ |
|
image, |
|
prompt, |
|
negative_prompt, |
|
adapter_name, |
|
style, |
|
num_inference_steps, |
|
guidance_scale, |
|
adapter_conditioning_scale, |
|
adapter_conditioning_factor, |
|
seed, |
|
apply_preprocess, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
negative_prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="run", |
|
) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == "__main__": |
|
model = Model(ADAPTER_NAMES[0]) |
|
demo = create_demo(model) |
|
demo.queue(max_size=20).launch() |