dialogos / app.py
eduardo-meik's picture
Update app.py, analysis in sidebar
4d9f7f2
import streamlit as st
from transformers import pipeline, RobertaTokenizerFast, TFRobertaForSequenceClassification, AutoTokenizer, AutoModelForSequenceClassification
# Sentiment Analysis Pipeline
sentiment_pipe = pipeline('sentiment-analysis')
# Toxicity Classifier
model_path_toxic = "citizenlab/distilbert-base-multilingual-cased-toxicity"
toxicity_classifier = pipeline("text-classification", model=model_path_toxic, tokenizer=model_path_toxic)
# Emotion Analysis
tokenizer_emotion = RobertaTokenizerFast.from_pretrained("arpanghoshal/EmoRoBERTa")
model_emotion = TFRobertaForSequenceClassification.from_pretrained("arpanghoshal/EmoRoBERTa")
emotion = pipeline('sentiment-analysis', model=model_emotion, tokenizer=tokenizer_emotion)
# User Needs Analysis
tokenizer_needs = AutoTokenizer.from_pretrained("thusken/nb-bert-base-user-needs")
model_needs = AutoModelForSequenceClassification.from_pretrained("thusken/nb-bert-base-user-needs")
user_needs = pipeline('text-classification', model=model_needs, tokenizer=tokenizer_needs)
st.title("Plataforma de Diálogos Participativos")
# Text area for input in sidebar
text = st.sidebar.text_area("Añade el texto a evaluar")
# Create columns for buttons in sidebar
col1, col2, col3, col4 = st.sidebar.columns(4)
# Place each button in a separate column
run_sentiment_analysis = col1.button("Evaluar Sentimiento")
run_toxicity_analysis = col2.button("Evaluar Toxicidad")
run_emotion_analysis = col3.button("Evaluar Emoción")
run_user_needs_analysis = col4.button("Evaluar Necesidades del Usuario")
# Container for output in main layout
output_container = st.container()
# Sentiment analysis
if run_sentiment_analysis and text:
with output_container:
sentiment_output = sentiment_pipe(text)
label = sentiment_output[0]['label']
score = round(sentiment_output[0]['score'] * 100, 2)
st.markdown(f"**Resultado del análisis de sentimiento:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
elif run_sentiment_analysis and not text:
st.sidebar.warning("Por favor, añade un texto para evaluar el sentimiento.")
# Toxicity analysis
if run_toxicity_analysis and text:
with output_container:
toxicity_output = toxicity_classifier(text)
label = toxicity_output[0]['label']
score = round(toxicity_output[0]['score'] * 100, 2)
st.markdown(f"**Resultado del análisis de toxicidad:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
elif run_toxicity_analysis and not text:
st.sidebar.warning("Por favor, añade un texto para evaluar la toxicidad.")
# Emotion analysis
if run_emotion_analysis and text:
with output_container:
emotion_output = emotion(text)
label = emotion_output[0]['label']
score = round(emotion_output[0]['score'] * 100, 2)
st.markdown(f"**Resultado del análisis de emoción:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
elif run_emotion_analysis and not text:
st.sidebar.warning("Por favor, añade un texto para evaluar la emoción.")
# User needs analysis
if run_user_needs_analysis and text:
with output_container:
needs_output = user_needs(text)
label = needs_output[0]['label']
score = round(needs_output[0]['score'] * 100, 2)
st.markdown(f"**Resultado del análisis de necesidades del usuario:**\n\n- **Etiqueta:** {label}\n- **Confianza:** {score}%")
elif run_user_needs_analysis and not text:
st.sidebar.warning("Por favor, añade un texto para evaluar las necesidades del usuario.")