Spaces:
Running
on
A10G
Running
on
A10G
KatharinaK
commited on
Commit
·
2a869f2
1
Parent(s):
d223295
Added attention masking and intersect masking; fix truncation of prompts
Browse files
modified_pipeline_semantic_stable_diffusion.py
CHANGED
@@ -9,16 +9,180 @@ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
|
9 |
|
10 |
from diffusers.image_processor import VaeImageProcessor
|
11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
|
12 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
13 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
14 |
-
from diffusers.utils import logging
|
|
|
15 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
16 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
17 |
# from . import SemanticStableDiffusionPipelineOutput
|
18 |
|
|
|
|
|
19 |
|
20 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
24 |
r"""
|
@@ -207,6 +371,29 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
207 |
latents = latents * self.scheduler.init_noise_sigma
|
208 |
return latents
|
209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
@torch.no_grad()
|
211 |
def __call__(
|
212 |
self,
|
@@ -235,7 +422,13 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
235 |
edit_mom_beta: Optional[float] = 0.4,
|
236 |
edit_weights: Optional[List[float]] = None,
|
237 |
sem_guidance: Optional[List[torch.Tensor]] = None,
|
238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
# DDPM additions
|
240 |
use_ddpm: bool = False,
|
241 |
wts: Optional[List[torch.Tensor]] = None,
|
@@ -334,6 +527,12 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
334 |
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
335 |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
336 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
337 |
# 0. Default height and width to unet
|
338 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
339 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
@@ -348,12 +547,12 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
348 |
enable_edit_guidance = True
|
349 |
if isinstance(editing_prompt, str):
|
350 |
editing_prompt = [editing_prompt]
|
351 |
-
enabled_editing_prompts = len(editing_prompt)
|
352 |
elif editing_prompt_embeddings is not None:
|
353 |
enable_edit_guidance = True
|
354 |
-
enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
355 |
else:
|
356 |
-
enabled_editing_prompts = 0
|
357 |
enable_edit_guidance = False
|
358 |
|
359 |
# get prompt text embeddings
|
@@ -361,17 +560,23 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
361 |
prompt,
|
362 |
padding="max_length",
|
363 |
max_length=self.tokenizer.model_max_length,
|
|
|
364 |
return_tensors="pt",
|
365 |
)
|
366 |
text_input_ids = text_inputs.input_ids
|
|
|
367 |
|
368 |
-
if text_input_ids.shape[-1]
|
369 |
-
|
|
|
|
|
|
|
|
|
370 |
logger.warning(
|
371 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
372 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
373 |
)
|
374 |
-
|
375 |
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
376 |
|
377 |
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
@@ -382,24 +587,37 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
382 |
if enable_edit_guidance:
|
383 |
# get safety text embeddings
|
384 |
if editing_prompt_embeddings is None:
|
|
|
|
|
|
|
|
|
385 |
edit_concepts_input = self.tokenizer(
|
386 |
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
387 |
padding="max_length",
|
388 |
max_length=self.tokenizer.model_max_length,
|
|
|
389 |
return_tensors="pt",
|
|
|
390 |
)
|
391 |
|
|
|
392 |
edit_concepts_input_ids = edit_concepts_input.input_ids
|
|
|
|
|
|
|
|
|
393 |
|
394 |
-
if edit_concepts_input_ids.shape[-1]
|
|
|
|
|
395 |
removed_text = self.tokenizer.batch_decode(
|
396 |
-
|
397 |
)
|
398 |
logger.warning(
|
399 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
400 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
401 |
)
|
402 |
-
|
403 |
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0]
|
404 |
else:
|
405 |
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1)
|
@@ -453,8 +671,11 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
453 |
# For classifier free guidance, we need to do two forward passes.
|
454 |
# Here we concatenate the unconditional and text embeddings into a single batch
|
455 |
# to avoid doing two forward passes
|
|
|
456 |
if enable_edit_guidance:
|
457 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts])
|
|
|
|
|
458 |
else:
|
459 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
460 |
# get the initial random noise unless the user supplied it
|
@@ -466,6 +687,9 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
466 |
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
467 |
timesteps = timesteps[-zs.shape[0]:]
|
468 |
|
|
|
|
|
|
|
469 |
# 5. Prepare latent variables
|
470 |
num_channels_latents = self.unet.config.in_channels
|
471 |
latents = self.prepare_latents(
|
@@ -493,7 +717,7 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
493 |
for i, t in enumerate(self.progress_bar(timesteps)):
|
494 |
# expand the latents if we are doing classifier free guidance
|
495 |
latent_model_input = (
|
496 |
-
torch.cat([latents] * (2 + enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
497 |
)
|
498 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
499 |
|
@@ -502,7 +726,7 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
502 |
|
503 |
# perform guidance
|
504 |
if do_classifier_free_guidance:
|
505 |
-
noise_pred_out = noise_pred.chunk(2 + enabled_editing_prompts) # [b,4, 64, 64]
|
506 |
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
507 |
noise_pred_edit_concepts = noise_pred_out[2:]
|
508 |
|
@@ -589,27 +813,115 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
589 |
|
590 |
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
591 |
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
|
|
599 |
)
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
613 |
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
614 |
|
615 |
# noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp
|
@@ -712,6 +1024,12 @@ class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
|
712 |
else: #if not use_ddpm:
|
713 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
714 |
|
|
|
|
|
|
|
|
|
|
|
|
|
715 |
# call the callback, if provided
|
716 |
if callback is not None and i % callback_steps == 0:
|
717 |
callback(i, t, latents)
|
|
|
9 |
|
10 |
from diffusers.image_processor import VaeImageProcessor
|
11 |
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
12 |
+
from diffusers.models.attention_processor import AttnProcessor, Attention
|
13 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
14 |
from diffusers.schedulers import KarrasDiffusionSchedulers
|
15 |
+
from diffusers.utils import logging
|
16 |
+
from diffusers.utils.torch_utils import randn_tensor
|
17 |
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
18 |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
19 |
# from . import SemanticStableDiffusionPipelineOutput
|
20 |
|
21 |
+
import torch.nn.functional as F
|
22 |
+
import math
|
23 |
|
24 |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
25 |
|
26 |
+
class AttentionStore():
|
27 |
+
@staticmethod
|
28 |
+
def get_empty_store():
|
29 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [],
|
30 |
+
"down_self": [], "mid_self": [], "up_self": []}
|
31 |
+
|
32 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str, editing_prompts, PnP):
|
33 |
+
# attn.shape = batch_size * head_size, seq_len query, seq_len_key
|
34 |
+
bs = 2 + int(PnP) + editing_prompts
|
35 |
+
source_batch_size = int(attn.shape[0] // bs)
|
36 |
+
skip = 2 if PnP else 1 # skip PnP & unconditional
|
37 |
+
self.forward(
|
38 |
+
attn[skip*source_batch_size:],
|
39 |
+
is_cross,
|
40 |
+
place_in_unet)
|
41 |
+
|
42 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
43 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
44 |
+
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
|
45 |
+
self.step_store[key].append(attn)
|
46 |
+
|
47 |
+
def between_steps(self, store_step=True):
|
48 |
+
if store_step:
|
49 |
+
if self.average:
|
50 |
+
if len(self.attention_store) == 0:
|
51 |
+
self.attention_store = self.step_store
|
52 |
+
else:
|
53 |
+
for key in self.attention_store:
|
54 |
+
for i in range(len(self.attention_store[key])):
|
55 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
56 |
+
else:
|
57 |
+
if len(self.attention_store) == 0:
|
58 |
+
self.attention_store = [self.step_store]
|
59 |
+
else:
|
60 |
+
self.attention_store.append(self.step_store)
|
61 |
+
|
62 |
+
self.cur_step += 1
|
63 |
+
self.step_store = self.get_empty_store()
|
64 |
+
|
65 |
+
def get_attention(self, step: int):
|
66 |
+
if self.average:
|
67 |
+
attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
|
68 |
+
else:
|
69 |
+
assert(step is not None)
|
70 |
+
attention = self.attention_store[step]
|
71 |
+
return attention
|
72 |
+
|
73 |
+
def aggregate_attention(self, attention_maps, prompts, res: int,
|
74 |
+
from_where: List[str], is_cross: bool, select: int
|
75 |
+
):
|
76 |
+
out = []
|
77 |
+
num_pixels = res ** 2
|
78 |
+
for location in from_where:
|
79 |
+
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
80 |
+
if item.shape[1] == num_pixels:
|
81 |
+
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
|
82 |
+
out.append(cross_maps)
|
83 |
+
out = torch.cat(out, dim=0)
|
84 |
+
# average over heads
|
85 |
+
out = out.sum(0) / out.shape[0]
|
86 |
+
return out
|
87 |
+
|
88 |
+
def __init__(self, average: bool):
|
89 |
+
self.step_store = self.get_empty_store()
|
90 |
+
self.attention_store = []
|
91 |
+
self.cur_step = 0
|
92 |
+
self.average = average
|
93 |
+
|
94 |
+
class CrossAttnProcessor:
|
95 |
+
|
96 |
+
def __init__(self, attention_store, place_in_unet, PnP, editing_prompts):
|
97 |
+
self.attnstore = attention_store
|
98 |
+
self.place_in_unet = place_in_unet
|
99 |
+
self.editing_prompts = editing_prompts
|
100 |
+
self.PnP = PnP
|
101 |
+
|
102 |
+
def __call__(
|
103 |
+
self,
|
104 |
+
attn: Attention,
|
105 |
+
hidden_states,
|
106 |
+
encoder_hidden_states=None,
|
107 |
+
attention_mask=None,
|
108 |
+
temb=None,
|
109 |
+
):
|
110 |
+
assert(not attn.residual_connection)
|
111 |
+
assert(attn.spatial_norm is None)
|
112 |
+
assert(attn.group_norm is None)
|
113 |
+
assert(hidden_states.ndim != 4)
|
114 |
+
assert(encoder_hidden_states is not None) # is cross
|
115 |
+
|
116 |
+
batch_size, sequence_length, _ = (
|
117 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
118 |
+
)
|
119 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
120 |
+
|
121 |
+
query = attn.to_q(hidden_states)
|
122 |
+
|
123 |
+
if encoder_hidden_states is None:
|
124 |
+
encoder_hidden_states = hidden_states
|
125 |
+
elif attn.norm_cross:
|
126 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
127 |
+
|
128 |
+
key = attn.to_k(encoder_hidden_states)
|
129 |
+
value = attn.to_v(encoder_hidden_states)
|
130 |
+
|
131 |
+
query = attn.head_to_batch_dim(query)
|
132 |
+
key = attn.head_to_batch_dim(key)
|
133 |
+
value = attn.head_to_batch_dim(value)
|
134 |
+
|
135 |
+
attention_probs = attn.get_attention_scores(query, key, attention_mask)
|
136 |
+
self.attnstore(attention_probs,
|
137 |
+
is_cross=True,
|
138 |
+
place_in_unet=self.place_in_unet,
|
139 |
+
editing_prompts=self.editing_prompts,
|
140 |
+
PnP=self.PnP)
|
141 |
+
|
142 |
+
hidden_states = torch.bmm(attention_probs, value)
|
143 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
144 |
+
|
145 |
+
# linear proj
|
146 |
+
hidden_states = attn.to_out[0](hidden_states)
|
147 |
+
# dropout
|
148 |
+
hidden_states = attn.to_out[1](hidden_states)
|
149 |
+
|
150 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
151 |
+
return hidden_states
|
152 |
+
|
153 |
+
# Modified from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionAttendAndExcitePipeline.GaussianSmoothing
|
154 |
+
class GaussianSmoothing():
|
155 |
+
|
156 |
+
def __init__(self, device):
|
157 |
+
kernel_size = [3, 3]
|
158 |
+
sigma = [0.5, 0.5]
|
159 |
+
|
160 |
+
# The gaussian kernel is the product of the gaussian function of each dimension.
|
161 |
+
kernel = 1
|
162 |
+
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
|
163 |
+
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
|
164 |
+
mean = (size - 1) / 2
|
165 |
+
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
|
166 |
+
|
167 |
+
# Make sure sum of values in gaussian kernel equals 1.
|
168 |
+
kernel = kernel / torch.sum(kernel)
|
169 |
+
|
170 |
+
# Reshape to depthwise convolutional weight
|
171 |
+
kernel = kernel.view(1, 1, *kernel.size())
|
172 |
+
kernel = kernel.repeat(1, *[1] * (kernel.dim() - 1))
|
173 |
+
|
174 |
+
self.weight = kernel.to(device)
|
175 |
+
|
176 |
+
def __call__(self, input):
|
177 |
+
"""
|
178 |
+
Arguments:
|
179 |
+
Apply gaussian filter to input.
|
180 |
+
input (torch.Tensor): Input to apply gaussian filter on.
|
181 |
+
Returns:
|
182 |
+
filtered (torch.Tensor): Filtered output.
|
183 |
+
"""
|
184 |
+
return F.conv2d(input, weight=self.weight.to(input.dtype))
|
185 |
+
|
186 |
|
187 |
class SemanticStableDiffusionPipeline(DiffusionPipeline):
|
188 |
r"""
|
|
|
371 |
latents = latents * self.scheduler.init_noise_sigma
|
372 |
return latents
|
373 |
|
374 |
+
def prepare_unet(self, attention_store, PnP: bool):
|
375 |
+
attn_procs = {}
|
376 |
+
for name in self.unet.attn_processors.keys():
|
377 |
+
if name.startswith("mid_block"):
|
378 |
+
place_in_unet = "mid"
|
379 |
+
elif name.startswith("up_blocks"):
|
380 |
+
place_in_unet = "up"
|
381 |
+
elif name.startswith("down_blocks"):
|
382 |
+
place_in_unet = "down"
|
383 |
+
else:
|
384 |
+
continue
|
385 |
+
|
386 |
+
if "attn2" in name:
|
387 |
+
attn_procs[name] = CrossAttnProcessor(
|
388 |
+
attention_store=attention_store,
|
389 |
+
place_in_unet=place_in_unet,
|
390 |
+
PnP=PnP,
|
391 |
+
editing_prompts=self.enabled_editing_prompts)
|
392 |
+
else:
|
393 |
+
attn_procs[name] = AttnProcessor()
|
394 |
+
|
395 |
+
self.unet.set_attn_processor(attn_procs)
|
396 |
+
|
397 |
@torch.no_grad()
|
398 |
def __call__(
|
399 |
self,
|
|
|
422 |
edit_mom_beta: Optional[float] = 0.4,
|
423 |
edit_weights: Optional[List[float]] = None,
|
424 |
sem_guidance: Optional[List[torch.Tensor]] = None,
|
425 |
+
# masking
|
426 |
+
use_cross_attn_mask: bool = False,
|
427 |
+
use_intersect_mask: bool = True,
|
428 |
+
edit_tokens_for_attn_map: List[str] = None,
|
429 |
+
# Attention store (just for visualization purposes)
|
430 |
+
attn_store_steps: Optional[List[int]] = [],
|
431 |
+
store_averaged_over_steps: bool = True,
|
432 |
# DDPM additions
|
433 |
use_ddpm: bool = False,
|
434 |
wts: Optional[List[torch.Tensor]] = None,
|
|
|
527 |
second element is a list of `bool`s denoting whether the corresponding generated image likely represents
|
528 |
"not-safe-for-work" (nsfw) content, according to the `safety_checker`.
|
529 |
"""
|
530 |
+
if use_intersect_mask:
|
531 |
+
use_cross_attn_mask = True
|
532 |
+
|
533 |
+
if use_cross_attn_mask:
|
534 |
+
self.smoothing = GaussianSmoothing(self.device)
|
535 |
+
|
536 |
# 0. Default height and width to unet
|
537 |
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
538 |
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
|
|
547 |
enable_edit_guidance = True
|
548 |
if isinstance(editing_prompt, str):
|
549 |
editing_prompt = [editing_prompt]
|
550 |
+
self.enabled_editing_prompts = len(editing_prompt)
|
551 |
elif editing_prompt_embeddings is not None:
|
552 |
enable_edit_guidance = True
|
553 |
+
self.enabled_editing_prompts = editing_prompt_embeddings.shape[0]
|
554 |
else:
|
555 |
+
self.enabled_editing_prompts = 0
|
556 |
enable_edit_guidance = False
|
557 |
|
558 |
# get prompt text embeddings
|
|
|
560 |
prompt,
|
561 |
padding="max_length",
|
562 |
max_length=self.tokenizer.model_max_length,
|
563 |
+
truncation=True,
|
564 |
return_tensors="pt",
|
565 |
)
|
566 |
text_input_ids = text_inputs.input_ids
|
567 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
568 |
|
569 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
570 |
+
text_input_ids, untruncated_ids
|
571 |
+
):
|
572 |
+
removed_text = self.tokenizer.batch_decode(
|
573 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
574 |
+
)
|
575 |
logger.warning(
|
576 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
577 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
578 |
)
|
579 |
+
|
580 |
text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
|
581 |
|
582 |
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
|
587 |
if enable_edit_guidance:
|
588 |
# get safety text embeddings
|
589 |
if editing_prompt_embeddings is None:
|
590 |
+
if edit_tokens_for_attn_map is not None:
|
591 |
+
edit_tokens = [[word.replace("</w>", "") for word in self.tokenizer.tokenize(item)] for item in editing_prompt]
|
592 |
+
#print(f"edit_tokens: {edit_tokens}")
|
593 |
+
|
594 |
edit_concepts_input = self.tokenizer(
|
595 |
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
596 |
padding="max_length",
|
597 |
max_length=self.tokenizer.model_max_length,
|
598 |
+
truncation=True,
|
599 |
return_tensors="pt",
|
600 |
+
return_length=True
|
601 |
)
|
602 |
|
603 |
+
num_edit_tokens = edit_concepts_input.length -2 # not counting startoftext and endoftext
|
604 |
edit_concepts_input_ids = edit_concepts_input.input_ids
|
605 |
+
untruncated_ids = self.tokenizer(
|
606 |
+
[x for item in editing_prompt for x in repeat(item, batch_size)],
|
607 |
+
padding="longest",
|
608 |
+
return_tensors="pt").input_ids
|
609 |
|
610 |
+
if untruncated_ids.shape[-1] >= edit_concepts_input_ids.shape[-1] and not torch.equal(
|
611 |
+
edit_concepts_input_ids, untruncated_ids
|
612 |
+
):
|
613 |
removed_text = self.tokenizer.batch_decode(
|
614 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
615 |
)
|
616 |
logger.warning(
|
617 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
618 |
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
619 |
)
|
620 |
+
|
621 |
edit_concepts = self.text_encoder(edit_concepts_input_ids.to(self.device))[0]
|
622 |
else:
|
623 |
edit_concepts = editing_prompt_embeddings.to(self.device).repeat(batch_size, 1, 1)
|
|
|
671 |
# For classifier free guidance, we need to do two forward passes.
|
672 |
# Here we concatenate the unconditional and text embeddings into a single batch
|
673 |
# to avoid doing two forward passes
|
674 |
+
self.text_cross_attention_maps = [prompt] if isinstance(prompt, str) else prompt
|
675 |
if enable_edit_guidance:
|
676 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings, edit_concepts])
|
677 |
+
self.text_cross_attention_maps += \
|
678 |
+
([editing_prompt] if isinstance(editing_prompt, str) else editing_prompt)
|
679 |
else:
|
680 |
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
681 |
# get the initial random noise unless the user supplied it
|
|
|
687 |
t_to_idx = {int(v):k for k,v in enumerate(timesteps[-zs.shape[0]:])}
|
688 |
timesteps = timesteps[-zs.shape[0]:]
|
689 |
|
690 |
+
self.attention_store = AttentionStore(average=store_averaged_over_steps)
|
691 |
+
self.prepare_unet(self.attention_store, False)
|
692 |
+
|
693 |
# 5. Prepare latent variables
|
694 |
num_channels_latents = self.unet.config.in_channels
|
695 |
latents = self.prepare_latents(
|
|
|
717 |
for i, t in enumerate(self.progress_bar(timesteps)):
|
718 |
# expand the latents if we are doing classifier free guidance
|
719 |
latent_model_input = (
|
720 |
+
torch.cat([latents] * (2 + self.enabled_editing_prompts)) if do_classifier_free_guidance else latents
|
721 |
)
|
722 |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
723 |
|
|
|
726 |
|
727 |
# perform guidance
|
728 |
if do_classifier_free_guidance:
|
729 |
+
noise_pred_out = noise_pred.chunk(2 + self.enabled_editing_prompts) # [b,4, 64, 64]
|
730 |
noise_pred_uncond, noise_pred_text = noise_pred_out[0], noise_pred_out[1]
|
731 |
noise_pred_edit_concepts = noise_pred_out[2:]
|
732 |
|
|
|
813 |
|
814 |
noise_guidance_edit_tmp = noise_guidance_edit_tmp * edit_guidance_scale_c
|
815 |
|
816 |
+
if use_cross_attn_mask:
|
817 |
+
out = self.attention_store.aggregate_attention(
|
818 |
+
attention_maps=self.attention_store.step_store,
|
819 |
+
prompts=self.text_cross_attention_maps,
|
820 |
+
res=16,
|
821 |
+
from_where=["up","down"],
|
822 |
+
is_cross=True,
|
823 |
+
select=self.text_cross_attention_maps.index(editing_prompt[c]),
|
824 |
)
|
825 |
+
|
826 |
+
attn_map = out[:, :, 1:] # 0 -> startoftext
|
827 |
+
attn_map *= 100
|
828 |
+
attn_map = torch.nn.functional.softmax(attn_map, dim=-1)
|
829 |
+
attn_map = attn_map[:,:,:num_edit_tokens[c]] # -1 -> endoftext
|
830 |
+
|
831 |
+
assert(attn_map.shape[2]==num_edit_tokens[c])
|
832 |
+
if edit_tokens_for_attn_map is not None:
|
833 |
+
# select attn_map for specified tokens
|
834 |
+
token_idx = [edit_tokens[c].index(item) for item in edit_tokens_for_attn_map[c]]
|
835 |
+
attn_map = attn_map[:,:,token_idx]
|
836 |
+
assert(attn_map.shape[2] == len(edit_tokens_for_attn_map[c]))
|
837 |
+
|
838 |
+
# average over tokens
|
839 |
+
attn_map = torch.sum(attn_map, dim=2)
|
840 |
+
|
841 |
+
# gaussian_smoothing
|
842 |
+
attn_map = F.pad(attn_map.unsqueeze(0).unsqueeze(0), (1, 1, 1, 1), mode="reflect")
|
843 |
+
attn_map = self.smoothing(attn_map).squeeze(0).squeeze(0)
|
844 |
+
|
845 |
+
# torch.quantile function expects float32
|
846 |
+
if attn_map.dtype == torch.float32:
|
847 |
+
tmp = torch.quantile(
|
848 |
+
attn_map.flatten(),
|
849 |
+
edit_threshold_c
|
850 |
+
)
|
851 |
+
else:
|
852 |
+
tmp = torch.quantile(
|
853 |
+
attn_map.flatten().to(torch.float32),
|
854 |
+
edit_threshold_c
|
855 |
+
).to(attn_map.dtype)
|
856 |
+
|
857 |
+
attn_mask = torch.where(attn_map >= tmp, 1.0, 0.0)
|
858 |
+
|
859 |
+
# resolution must match latent space dimension
|
860 |
+
attn_mask = F.interpolate(
|
861 |
+
attn_mask.unsqueeze(0).unsqueeze(0),
|
862 |
+
noise_guidance_edit_tmp.shape[-2:] # 64,64
|
863 |
+
)[0,0,:,:]
|
864 |
+
|
865 |
+
if not use_intersect_mask:
|
866 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * attn_mask
|
867 |
+
|
868 |
+
if use_intersect_mask:
|
869 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
870 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True)
|
871 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1,4,1,1)
|
872 |
+
|
873 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
874 |
+
tmp = torch.quantile(
|
875 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
876 |
+
edit_threshold_c,
|
877 |
+
dim=2,
|
878 |
+
keepdim=False,
|
879 |
+
)
|
880 |
+
else:
|
881 |
+
tmp = torch.quantile(
|
882 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
883 |
+
edit_threshold_c,
|
884 |
+
dim=2,
|
885 |
+
keepdim=False,
|
886 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
887 |
+
|
888 |
+
sega_mask = torch.where(
|
889 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
890 |
+
torch.ones_like(noise_guidance_edit_tmp),
|
891 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
892 |
+
)
|
893 |
+
|
894 |
+
intersect_mask = sega_mask * attn_mask
|
895 |
+
noise_guidance_edit_tmp = noise_guidance_edit_tmp * intersect_mask
|
896 |
+
|
897 |
+
elif not use_cross_attn_mask:
|
898 |
+
# calculate quantile
|
899 |
+
noise_guidance_edit_tmp_quantile = torch.abs(noise_guidance_edit_tmp)
|
900 |
+
noise_guidance_edit_tmp_quantile = torch.sum(noise_guidance_edit_tmp_quantile, dim=1, keepdim=True)
|
901 |
+
noise_guidance_edit_tmp_quantile = noise_guidance_edit_tmp_quantile.repeat(1,4,1,1)
|
902 |
+
|
903 |
+
# torch.quantile function expects float32
|
904 |
+
if noise_guidance_edit_tmp_quantile.dtype == torch.float32:
|
905 |
+
tmp = torch.quantile(
|
906 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2),
|
907 |
+
edit_threshold_c,
|
908 |
+
dim=2,
|
909 |
+
keepdim=False,
|
910 |
+
)
|
911 |
+
else:
|
912 |
+
tmp = torch.quantile(
|
913 |
+
noise_guidance_edit_tmp_quantile.flatten(start_dim=2).to(torch.float32),
|
914 |
+
edit_threshold_c,
|
915 |
+
dim=2,
|
916 |
+
keepdim=False,
|
917 |
+
).to(noise_guidance_edit_tmp_quantile.dtype)
|
918 |
+
|
919 |
+
noise_guidance_edit_tmp = torch.where(
|
920 |
+
noise_guidance_edit_tmp_quantile >= tmp[:, :, None, None],
|
921 |
+
noise_guidance_edit_tmp,
|
922 |
+
torch.zeros_like(noise_guidance_edit_tmp),
|
923 |
+
)
|
924 |
+
|
925 |
noise_guidance_edit[c, :, :, :, :] = noise_guidance_edit_tmp
|
926 |
|
927 |
# noise_guidance_edit = noise_guidance_edit + noise_guidance_edit_tmp
|
|
|
1024 |
else: #if not use_ddpm:
|
1025 |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1026 |
|
1027 |
+
# step callback
|
1028 |
+
store_step = i in attn_store_steps
|
1029 |
+
if store_step:
|
1030 |
+
print("storing attention")
|
1031 |
+
self.attention_store.between_steps(store_step)
|
1032 |
+
|
1033 |
# call the callback, if provided
|
1034 |
if callback is not None and i % callback_steps == 0:
|
1035 |
callback(i, t, latents)
|