import os
import shlex
import subprocess
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
subprocess.run(
shlex.split(
"pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"
)
)
TMP_DIR = "/tmp"
os.makedirs(TMP_DIR, exist_ok=True)
image_pipeline = DiffusionPipeline.from_pretrained(
"dylanebert/imagedream",
custom_pipeline="dylanebert/multi-view-diffusion",
torch_dtype=torch.float16,
trust_remote_code=True,
).to("cuda")
splat_pipeline = DiffusionPipeline.from_pretrained(
"dylanebert/LGM",
custom_pipeline="dylanebert/LGM",
torch_dtype=torch.float16,
trust_remote_code=True,
).to("cuda")
@spaces.GPU
def run(input_image, seed):
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
input_image = input_image.astype("float32") / 255.0
images = image_pipeline(
"", input_image, guidance_scale=5, num_inference_steps=30, elevation=0
)
gaussians = splat_pipeline(images)
output_ply_path = os.path.join(TMP_DIR, "output.ply")
splat_pipeline.save_ply(gaussians, output_ply_path)
return output_ply_path
_TITLE = """LGM Mini"""
_DESCRIPTION = """
"""
css = """
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
block = gr.Blocks(title=_TITLE, css=css)
with block:
gr.DuplicateButton(
value="Duplicate Space for private use", elem_id="duplicate-button"
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# " + _TITLE)
gr.Markdown(_DESCRIPTION)
with gr.Row(variant="panel"):
with gr.Column(scale=1):
input_image = gr.Image(label="image", type="numpy")
seed_input = gr.Number(label="seed", value=42)
button_gen = gr.Button("Generate")
with gr.Column(scale=1):
output_splat = gr.Model3D(label="3D Gaussians")
button_gen.click(
fn=run, inputs=[input_image, seed_input], outputs=[output_splat]
)
gr.Examples(
examples=[
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_cat_statue.jpg",
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_baby_penguin.jpg",
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/A_cartoon_house_with_red_roof.jpg",
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/a_hat.jpg",
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/an_antique_chest.jpg",
"https://huggingface.co/datasets/dylanebert/iso3d/resolve/main/jpg@512/metal.jpg",
],
inputs=[input_image],
outputs=[output_splat],
fn=lambda x: run(input_image=x, seed=42),
cache_examples=True,
label="Image-to-3D Examples",
)
block.queue().launch(debug=True, share=True)