Spaces:
dylanebert
/
Running on Zero

File size: 10,628 Bytes
90fd8f8
 
 
 
 
 
 
 
 
 
 
 
 
bab8ce7
 
 
 
 
57322e1
1a5d02b
90fd8f8
 
 
 
 
 
 
 
625a797
 
90fd8f8
 
 
 
 
bab8ce7
 
 
 
 
 
 
 
 
 
 
 
 
90fd8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
625a797
90fd8f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import tyro
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import rembg
import gradio as gr

# download checkpoints
from huggingface_hub import hf_hub_download
ckpt_path = hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16.safetensors")

# NOTE: no -e... else it's not working!
os.system("pip install ./diff-gaussian-rasterization")

import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera

from core.options import AllConfigs, Options
from core.models import LGM
from mvdream.pipeline_mvdream import MVDreamPipeline

import spaces

IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
GRADIO_VIDEO_PATH = 'gradio_output.mp4'
GRADIO_PLY_PATH = 'gradio_output.ply'

# opt = tyro.cli(AllConfigs)
opt = Options(
    input_size=256,
    up_channels=(1024, 1024, 512, 256, 128), # one more decoder
    up_attention=(True, True, True, False, False),
    splat_size=128,
    output_size=512, # render & supervise Gaussians at a higher resolution.
    batch_size=8,
    num_views=8,
    gradient_accumulation_steps=1,
    mixed_precision='bf16',
    resume=ckpt_path,
)

# model
model = LGM(opt)

# resume pretrained checkpoint
if opt.resume is not None:
    if opt.resume.endswith('safetensors'):
        ckpt = load_file(opt.resume, device='cpu')
    else:
        ckpt = torch.load(opt.resume, map_location='cpu')
    model.load_state_dict(ckpt, strict=False)
    print(f'[INFO] Loaded checkpoint from {opt.resume}')
else:
    print(f'[WARN] model randomly initialized, are you sure?')

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.half().to(device)
model.eval()

tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1

# load dreams
pipe_text = MVDreamPipeline.from_pretrained(
    'ashawkey/mvdream-sd2.1-diffusers', # remote weights
    torch_dtype=torch.float16,
    trust_remote_code=True,
    # local_files_only=True,
)
pipe_text = pipe_text.to(device)

pipe_image = MVDreamPipeline.from_pretrained(
    "ashawkey/imagedream-ipmv-diffusers", # remote weights
    torch_dtype=torch.float16,
    trust_remote_code=True,
    # local_files_only=True,
)
pipe_image = pipe_image.to(device)

# load rembg
bg_remover = rembg.new_session()

# process function
@spaces.GPU
def process(input_image, prompt, prompt_neg='', input_elevation=0, input_num_steps=30, input_seed=42):

    # seed
    kiui.seed_everything(input_seed)

    os.makedirs(opt.workspace, exist_ok=True)
    output_video_path = os.path.join(opt.workspace, GRADIO_VIDEO_PATH)
    output_ply_path = os.path.join(opt.workspace, GRADIO_PLY_PATH)

    # text-conditioned
    if input_image is None:
        mv_image_uint8 = pipe_text(prompt, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=7.5, elevation=input_elevation)
        mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
        # bg removal
        mv_image = []
        for i in range(4):
            image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
            # to white bg
            image = image.astype(np.float32) / 255
            image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
            image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
            mv_image.append(image)
    # image-conditioned (may also input text, but no text usually works too)
    else:
        input_image = np.array(input_image) # uint8
        # bg removal
        carved_image = rembg.remove(input_image, session=bg_remover) # [H, W, 4]
        mask = carved_image[..., -1] > 0
        image = recenter(carved_image, mask, border_ratio=0.2)
        image = image.astype(np.float32) / 255.0
        image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
        mv_image = pipe_image(prompt, image, negative_prompt=prompt_neg, num_inference_steps=input_num_steps, guidance_scale=5.0,  elevation=input_elevation)
        
    mv_image_grid = np.concatenate([
        np.concatenate([mv_image[1], mv_image[2]], axis=1),
        np.concatenate([mv_image[3], mv_image[0]], axis=1),
    ], axis=0)

    # generate gaussians
    input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
    input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
    input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
    input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)

    rays_embeddings = model.prepare_default_rays(device, elevation=input_elevation)
    input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]

    with torch.no_grad():
        with torch.autocast(device_type='cuda', dtype=torch.float16):
            # generate gaussians
            gaussians = model.forward_gaussians(input_image)
        
        # save gaussians
        model.gs.save_ply(gaussians, output_ply_path)
        
        # render 360 video 
        images = []
        elevation = 0
        if opt.fancy_video:
            azimuth = np.arange(0, 720, 4, dtype=np.int32)
            for azi in tqdm.tqdm(azimuth):
                
                cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)

                cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
                
                # cameras needed by gaussian rasterizer
                cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
                cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
                cam_pos = - cam_poses[:, :3, 3] # [V, 3]

                scale = min(azi / 360, 1)

                image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
                images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
        else:
            azimuth = np.arange(0, 360, 2, dtype=np.int32)
            for azi in tqdm.tqdm(azimuth):
                
                cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)

                cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
                
                # cameras needed by gaussian rasterizer
                cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
                cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
                cam_pos = - cam_poses[:, :3, 3] # [V, 3]

                image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
                images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))

        images = np.concatenate(images, axis=0)
        imageio.mimwrite(output_video_path, images, fps=30)

    return mv_image_grid, output_video_path, output_ply_path

# gradio UI

_TITLE = '''LGM: Large Multi-View Gaussian Model for High-Resolution 3D Content Creation'''

_DESCRIPTION = '''
<div>
<a style="display:inline-block" href="https://me.kiui.moe/lgm/"><img src='https://img.shields.io/badge/public_website-8A2BE2'></a>
<a style="display:inline-block; margin-left: .5em" href="https://github.com/3DTopia/LGM"><img src='https://img.shields.io/github/stars/3DTopia/LGM?style=social'/></a>
</div>

* Input can be only text, only image, or both image and text. 
* If you find the output unsatisfying, try using different seeds!
'''

block = gr.Blocks(title=_TITLE).queue()
with block:
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown('# ' + _TITLE)
    gr.Markdown(_DESCRIPTION)
    
    with gr.Row(variant='panel'):
        with gr.Column(scale=1):
            # input image
            input_image = gr.Image(label="image", type='pil')
            # input prompt
            input_text = gr.Textbox(label="prompt")
            # negative prompt
            input_neg_text = gr.Textbox(label="negative prompt", value='ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate')
            # elevation
            input_elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
            # inference steps
            input_num_steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=30)
            # random seed
            input_seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
            # gen button
            button_gen = gr.Button("Generate")

        
        with gr.Column(scale=1):
            with gr.Tab("Video"):
                # final video results
                output_video = gr.Video(label="video")
                # ply file
                output_file = gr.File(label="ply")
            with gr.Tab("Multi-view Image"):
                # multi-view results
                output_image = gr.Image(interactive=False, show_label=False)

        button_gen.click(process, inputs=[input_image, input_text, input_neg_text, input_elevation, input_num_steps, input_seed], outputs=[output_image, output_video, output_file])
    
    gr.Examples(
        examples=[
            "data_test/anya_rgba.png",
            "data_test/bird_rgba.png",
            "data_test/catstatue_rgba.png",
        ],
        inputs=[input_image],
        outputs=[output_image, output_video, output_file],
        fn=lambda x: process(input_image=x, prompt=''),
        cache_examples=False,
        label='Image-to-3D Examples'
    )

    gr.Examples(
        examples=[
            "a motorbike",
            "a hamburger",
            "a furry red fox head",
        ],
        inputs=[input_text],
        outputs=[output_image, output_video, output_file],
        fn=lambda x: process(input_image=None, prompt=x),
        cache_examples=False,
        label='Text-to-3D Examples'
    )
    
block.launch()