hf_extractor / model_utils.py
dwb2023's picture
tweak imports
71559ee verified
import subprocess
import os
import torch
from transformers import BitsAndBytesConfig, AutoConfig, AutoModelForCausalLM, LlavaNextForConditionalGeneration, LlavaForConditionalGeneration, PaliGemmaForConditionalGeneration, Idefics2ForConditionalGeneration, Owlv2ForObjectDetection, GroundingDinoForObjectDetection, SamModel
import spaces
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
def install_flash_attn():
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
ARCHITECTURE_MAP = {
"LlavaNextForConditionalGeneration": LlavaNextForConditionalGeneration,
"LlavaForConditionalGeneration": LlavaForConditionalGeneration,
"PaliGemmaForConditionalGeneration": PaliGemmaForConditionalGeneration,
"Idefics2ForConditionalGeneration": Idefics2ForConditionalGeneration,
"Owlv2ForObjectDetection": Owlv2ForObjectDetection,
"GroundingDinoForObjectDetection": GroundingDinoForObjectDetection,
"SamModel": SamModel,
"AutoModelForCausalLM": AutoModelForCausalLM,
}
@spaces.GPU
def get_model_summary(model_name):
try:
config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
architecture = config.architectures[0]
quantization_config = getattr(config, 'quantization_config', None)
if quantization_config:
bnb_config = BitsAndBytesConfig(
load_in_4bit=quantization_config.get('load_in_4bit', False),
load_in_8bit=quantization_config.get('load_in_8bit', False),
bnb_4bit_compute_dtype=quantization_config.get('bnb_4bit_compute_dtype', torch.float16),
bnb_4bit_quant_type=quantization_config.get('bnb_4bit_quant_type', 'nf4'),
bnb_4bit_use_double_quant=quantization_config.get('bnb_4bit_use_double_quant', False),
llm_int8_enable_fp32_cpu_offload=quantization_config.get('llm_int8_enable_fp32_cpu_offload', False),
llm_int8_has_fp16_weight=quantization_config.get('llm_int8_has_fp16_weight', False),
llm_int8_skip_modules=quantization_config.get('llm_int8_skip_modules', None),
llm_int8_threshold=quantization_config.get('llm_int8_threshold', 6.0),
)
else:
bnb_config = None
model_class = ARCHITECTURE_MAP.get(architecture, AutoModelForCausalLM)
model = model_class.from_pretrained(
model_name, config=bnb_config, trust_remote_code=True
)
if model and not quantization_config:
model = model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))
model_summary = str(model) if model else "Model architecture not found."
config_content = config.to_json_string() if config else "Configuration not found."
return f"## Model Architecture\n\n{model_summary}\n\n## Configuration\n\n{config_content}", ""
except ValueError as ve:
return "", f"ValueError: {ve}"
except EnvironmentError as ee:
return "", f"EnvironmentError: {ee}"
except Exception as e:
return "", str(e)