Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import subprocess | |
import gradio as gr | |
from magika import Magika | |
from huggingface_hub import login | |
# Get the HF token and space author name from environment variables | |
hf_token = os.getenv("HF_TOKEN") | |
hf_user = os.getenv("SPACE_AUTHOR_NAME") | |
if not hf_token: | |
raise ValueError("HF_TOKEN environment variable is not set") | |
if not hf_user: | |
raise ValueError("SPACE_AUTHOR_NAME environment variable is not set") | |
# Perform login using the token | |
# login(token=hf_token, add_to_git_credential=True) | |
SUPPORTED_FILE_TYPES = ["txt", "python", "markdown", "yaml", "json", "csv", "tsv", "xml", "html"] | |
def validate_url(url): | |
return url.startswith('https://') | |
def clone_repo(url, repo_dir, hf_token, hf_user): | |
env = os.environ.copy() | |
env['GIT_LFS_SKIP_SMUDGE'] = '1' | |
# Construct the Git URL with the token and author name for authentication | |
token_url = url.replace('https://', f'https://{hf_user}:{hf_token}@') | |
result = subprocess.run(["git", "clone", token_url, repo_dir], env=env, capture_output=True, text=True) | |
if result.returncode != 0: | |
return False, result.stderr | |
return True, None | |
def get_file_summary(file_path, file_type): | |
size = os.path.getsize(file_path) | |
return { | |
"name": os.path.relpath(file_path), | |
"type": file_type, | |
"size": size, | |
} | |
def read_file_content(file_path): | |
with open(file_path, "r", encoding="utf-8", errors="ignore") as file: | |
return file.read() | |
def validate_file_types(directory): | |
m = Magika() | |
file_types = {} | |
for root, _, files in os.walk(directory): | |
if '.git' in root: | |
continue | |
for file_name in files: | |
file_path = os.path.join(root, file_name) | |
try: | |
with open(file_path, 'rb') as file: | |
file_bytes = file.read() | |
result = m.identify_bytes(file_bytes) | |
file_types[file_path] = result.output.ct_label | |
except Exception as e: | |
file_types[file_path] = f"Error: {str(e)}" | |
return file_types | |
def extract_repo_content(url, hf_token, hf_user): | |
if not validate_url(url): | |
return [{"header": {"name": "Error", "type": "error", "size": 0}, "content": "Invalid URL"}] | |
repo_dir = "./temp_repo" | |
if os.path.exists(repo_dir): | |
subprocess.run(["rm", "-rf", repo_dir]) | |
success, error = clone_repo(url, repo_dir, hf_token, hf_user) | |
if not success: | |
return [{"header": {"name": "Error", "type": "error", "size": 0}, "content": f"Failed to clone repository: {error}"}] | |
file_types = validate_file_types(repo_dir) | |
extracted_content = [] | |
for file_path, file_type in file_types.items(): | |
file_summary = get_file_summary(file_path, file_type) | |
content = {"header": file_summary} | |
if file_type in SUPPORTED_FILE_TYPES and file_summary["size"] <= 32 * 1024: | |
try: | |
content["content"] = read_file_content(file_path) | |
except Exception as e: | |
content["content"] = f"Failed to read file content: {str(e)}" | |
else: | |
content["content"] = "File too large or binary, content not captured." | |
extracted_content.append(content) | |
# Cleanup temporary directory | |
subprocess.run(["rm", "-rf", repo_dir]) | |
return extracted_content | |
def format_output(extracted_content, repo_url): | |
formatted_output = f"# Repository URL: {repo_url}\n\n" | |
for file_data in extracted_content: | |
if isinstance(file_data, dict) and 'header' in file_data: | |
formatted_output += f"### File: {file_data['header']['name']}\n" | |
formatted_output += f"**Type:** {file_data['header']['type']}\n" | |
formatted_output += f"**Size:** {file_data['header']['size']} bytes\n" | |
formatted_output += "#### Content:\n" | |
formatted_output += f"```\n{file_data['content']}\n```\n\n" | |
else: | |
formatted_output += "Error in file data format.\n" | |
return formatted_output | |
def extract_and_display(url): | |
extracted_content = extract_repo_content(url, hf_token, hf_user) | |
formatted_output = format_output(extracted_content, url) | |
return formatted_output | |
app = gr.Blocks(theme="sudeepshouche/minimalist") | |
with app: | |
gr.Markdown("# Hugging Face Space / Model Repository Content Extractor") | |
url_input = gr.Textbox(label="https:// URL of Repository", placeholder="Enter the repository URL here OR select an example below...") | |
url_examples = gr.Examples( | |
examples=[ | |
["https://huggingface.co/spaces/big-vision/paligemma-hf"], | |
["https://huggingface.co/microsoft/Phi-3-vision-128k-instruct"], | |
["https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf"] | |
], | |
inputs=url_input | |
) | |
output_display = gr.Textbox(label="Extracted Repository Content", show_copy_button=True, lines=20, placeholder="Repository content will be extracted here...\n\nMetadata is captured for all files, but text content provided only for files less than 32 kb\n\n\n\nReview and search through the content here OR simply copy it for offline analysis!!. π€") | |
extract_button = gr.Button("Extract Content") | |
extract_button.click(fn=extract_and_display, inputs=url_input, outputs=output_display) | |
app.launch() | |