Spatial_Control_for_SD / modules /attention_modify.py
duongve's picture
Upload 24 files
7ef93e7 verified
raw
history blame
44.2 kB
from diffusers.utils import (
USE_PEFT_BACKEND,
_get_model_file,
delete_adapter_layers,
is_accelerate_available,
logging,
set_adapter_layers,
set_weights_and_activate_adapters,
)
import torch
import torch.nn.functional as F
from torch.autograd.function import Function
import torch.nn as nn
from torch import einsum
import os
from collections import defaultdict
from contextlib import nullcontext
from typing import Callable, Dict, List, Optional, Union
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
from diffusers.models.embeddings import ImageProjection
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
import math
from einops import rearrange
from diffusers.image_processor import IPAdapterMaskProcessor
xformers_available = False
try:
import xformers
xformers_available = True
except ImportError:
pass
EPSILON = 1e-6
exists = lambda val: val is not None
default = lambda val, d: val if exists(val) else d
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def get_attention_scores(attn, query, key, attention_mask=None):
if attn.upcast_attention:
query = query.float()
key = key.float()
if attention_mask is None:
baddbmm_input = torch.empty(
query.shape[0],
query.shape[1],
key.shape[1],
dtype=query.dtype,
device=query.device,
)
beta = 0
else:
baddbmm_input = attention_mask
beta = 1
attention_scores = torch.baddbmm(
baddbmm_input,
query,
key.transpose(-1, -2),
beta=beta,
alpha=attn.scale,
)
del baddbmm_input
if attn.upcast_softmax:
attention_scores = attention_scores.float()
return attention_scores.to(query.dtype)
# Get attention_score with this:
def scaled_dot_product_attention_regionstate(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None,weight_func =None, region_state = None, sigma = None) -> torch.Tensor:
# Efficient implementation equivalent to the following:
L, S = query.size(-2), key.size(-2)
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
attn_bias = torch.zeros(L, S, dtype=query.dtype,device = query.device)
if is_causal:
assert attn_mask is None
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
attn_bias.to(query.dtype)
if attn_mask is not None:
if attn_mask.dtype == torch.bool:
attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
else:
attn_bias += attn_mask
attn_weight = query @ key.transpose(-2, -1) * scale_factor
attn_weight += attn_bias
batch_size, num_heads, sequence_length, embed_dim = attn_weight.shape
attn_weight = attn_weight.reshape((-1,sequence_length,embed_dim))
cross_attention_weight = weight_func(region_state, sigma, attn_weight)
repeat_time = attn_weight.shape[0]//cross_attention_weight.shape[0]
attn_weight += torch.repeat_interleave(
cross_attention_weight, repeats=repeat_time, dim=0
)
attn_weight = attn_weight.reshape((-1,num_heads,sequence_length,embed_dim))
attn_weight = torch.softmax(attn_weight, dim=-1)
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
return attn_weight @ value
class FlashAttentionFunction(Function):
@staticmethod
@torch.no_grad()
def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
"""Algorithm 2 in the paper"""
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
o = torch.zeros_like(q)
all_row_sums = torch.zeros((*q.shape[:-1], 1), device=device)
all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, device=device)
scale = q.shape[-1] ** -0.5
if not exists(mask):
mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
else:
mask = rearrange(mask, "b n -> b 1 1 n")
mask = mask.split(q_bucket_size, dim=-1)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
mask,
all_row_sums.split(q_bucket_size, dim=-2),
all_row_maxes.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if exists(row_mask):
attn_weights.masked_fill_(~row_mask, max_neg_value)
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones(
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
attn_weights -= block_row_maxes
exp_weights = torch.exp(attn_weights)
if exists(row_mask):
exp_weights.masked_fill_(~row_mask, 0.0)
block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
min=EPSILON
)
new_row_maxes = torch.maximum(block_row_maxes, row_maxes)
exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)
exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)
new_row_sums = (
exp_row_max_diff * row_sums
+ exp_block_row_max_diff * block_row_sums
)
oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
(exp_block_row_max_diff / new_row_sums) * exp_values
)
row_maxes.copy_(new_row_maxes)
row_sums.copy_(new_row_sums)
lse = all_row_sums.log() + all_row_maxes
ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
ctx.save_for_backward(q, k, v, o, lse)
return o
@staticmethod
@torch.no_grad()
def backward(ctx, do):
"""Algorithm 4 in the paper"""
causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
q, k, v, o, lse = ctx.saved_tensors
device = q.device
max_neg_value = -torch.finfo(q.dtype).max
qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)
dq = torch.zeros_like(q)
dk = torch.zeros_like(k)
dv = torch.zeros_like(v)
row_splits = zip(
q.split(q_bucket_size, dim=-2),
o.split(q_bucket_size, dim=-2),
do.split(q_bucket_size, dim=-2),
mask,
lse.split(q_bucket_size, dim=-2),
dq.split(q_bucket_size, dim=-2),
)
for ind, (qc, oc, doc, row_mask, lsec, dqc) in enumerate(row_splits):
q_start_index = ind * q_bucket_size - qk_len_diff
col_splits = zip(
k.split(k_bucket_size, dim=-2),
v.split(k_bucket_size, dim=-2),
dk.split(k_bucket_size, dim=-2),
dv.split(k_bucket_size, dim=-2),
)
for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
k_start_index = k_ind * k_bucket_size
attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale
if causal and q_start_index < (k_start_index + k_bucket_size - 1):
causal_mask = torch.ones(
(qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
).triu(q_start_index - k_start_index + 1)
attn_weights.masked_fill_(causal_mask, max_neg_value)
p = torch.exp(attn_weights - lsec)
if exists(row_mask):
p.masked_fill_(~row_mask, 0.0)
dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
dp = einsum("... i d, ... j d -> ... i j", doc, vc)
D = (doc * oc).sum(dim=-1, keepdims=True)
ds = p * scale * (dp - D)
dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)
dqc.add_(dq_chunk)
dkc.add_(dk_chunk)
dvc.add_(dv_chunk)
return dq, dk, dv, None, None, None, None
class AttnProcessor(nn.Module):
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb: Optional[torch.Tensor] = None,
region_prompt = None,
ip_adapter_masks = None,
*args,
**kwargs,
):
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
#_,img_sequence_length,_ = hidden_states.shape
img_sequence_length = hidden_states.shape[1]
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
is_xattn = False
if encoder_hidden_states is not None and region_prompt is not None:
is_xattn = True
region_state = region_prompt["region_state"]
weight_func = region_prompt["weight_func"]
sigma = region_prompt["sigma"]
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length,batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if is_xattn and isinstance(region_state, dict):
# use torch.baddbmm method (slow)
attention_scores = get_attention_scores(attn, query, key, attention_mask)
cross_attention_weight = weight_func(region_state[img_sequence_length].to(query.device), sigma, attention_scores)
attention_scores += torch.repeat_interleave(
cross_attention_weight, repeats=attention_scores.shape[0] // cross_attention_weight.shape[0], dim=0
)
# calc probs
attention_probs = attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(query.dtype)
hidden_states = torch.bmm(attention_probs, value)
elif xformers_available:
hidden_states = xformers.ops.memory_efficient_attention(
query.contiguous(),
key.contiguous(),
value.contiguous(),
attn_bias=attention_mask,
)
hidden_states = hidden_states.to(query.dtype)
else:
'''q_bucket_size = 512
k_bucket_size = 1024
# use flash-attention
hidden_states = FlashAttentionFunction.apply(
query.contiguous(),
key.contiguous(),
value.contiguous(),
attention_mask,
False,
q_bucket_size,
k_bucket_size,
)'''
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAdapterAttnProcessor(nn.Module):
r"""
Attention processor for Multiple IP-Adapters.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
The context length of the image features.
scale (`float` or List[`float`], defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
super().__init__()
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
if not isinstance(num_tokens, (tuple, list)):
num_tokens = [num_tokens]
self.num_tokens = num_tokens
if not isinstance(scale, list):
scale = [scale] * len(num_tokens)
if len(scale) != len(num_tokens):
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
self.scale = scale
self.to_k_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
self.to_v_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale=1.0,
region_prompt = None,
ip_adapter_masks = None,
):
#_,img_sequence_length,_ = hidden_states.shape
img_sequence_length= hidden_states.shape[1]
residual = hidden_states
is_xattn = False
if encoder_hidden_states is not None and region_prompt is not None:
is_xattn = True
region_state = region_prompt["region_state"]
weight_func = region_prompt["weight_func"]
sigma = region_prompt["sigma"]
# separate ip_hidden_states from encoder_hidden_states
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, tuple):
encoder_hidden_states, ip_hidden_states = encoder_hidden_states
else:
deprecation_message = (
"You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
)
deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
[encoder_hidden_states[:, end_pos:, :]],
)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
if is_xattn and isinstance(region_state, dict):
# use torch.baddbmm method (slow)
attention_scores = get_attention_scores(attn, query, key, attention_mask)
cross_attention_weight = weight_func(region_state[img_sequence_length].to(query.device), sigma, attention_scores)
attention_scores += torch.repeat_interleave(
cross_attention_weight, repeats=attention_scores.shape[0] // cross_attention_weight.shape[0], dim=0
)
# calc probs
attention_probs = attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(query.dtype)
hidden_states = torch.bmm(attention_probs, value)
elif xformers_available:
hidden_states = xformers.ops.memory_efficient_attention(
query.contiguous(),
key.contiguous(),
value.contiguous(),
attn_bias=attention_mask,
)
hidden_states = hidden_states.to(query.dtype)
else:
'''q_bucket_size = 512
k_bucket_size = 1024
# use flash-attention
hidden_states = FlashAttentionFunction.apply(
query.contiguous(),
key.contiguous(),
value.contiguous(),
attention_mask,
False,
q_bucket_size,
k_bucket_size,
)'''
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = hidden_states.to(query.dtype)
hidden_states = attn.batch_to_head_dim(hidden_states)
'''# for ip-adapter
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
):
ip_key = to_k_ip(current_ip_hidden_states)
ip_value = to_v_ip(current_ip_hidden_states)
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
if xformers_available:
current_ip_hidden_states = xformers.ops.memory_efficient_attention(
query.contiguous(),
ip_key.contiguous(),
ip_value.contiguous(),
attn_bias=None,
)
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
else:
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
hidden_states = hidden_states + scale * current_ip_hidden_states'''
#control region apply ip-adapter
if ip_adapter_masks is not None:
if not isinstance(ip_adapter_masks, List):
# for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
raise ValueError(
f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
f"({len(ip_hidden_states)})"
)
else:
for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
raise ValueError(
"Each element of the ip_adapter_masks array should be a tensor with shape "
"[1, num_images_for_ip_adapter, height, width]."
" Please use `IPAdapterMaskProcessor` to preprocess your mask"
)
if mask.shape[1] != ip_state.shape[1]:
raise ValueError(
f"Number of masks ({mask.shape[1]}) does not match "
f"number of ip images ({ip_state.shape[1]}) at index {index}"
)
if isinstance(scale, list) and not len(scale) == mask.shape[1]:
raise ValueError(
f"Number of masks ({mask.shape[1]}) does not match "
f"number of scales ({len(scale)}) at index {index}"
)
else:
ip_adapter_masks = [None] * len(self.scale)
# for ip-adapter
for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
):
skip = False
if isinstance(scale, list):
if all(s == 0 for s in scale):
skip = True
elif scale == 0:
skip = True
if not skip:
if mask is not None:
if not isinstance(scale, list):
scale = [scale] * mask.shape[1]
current_num_images = mask.shape[1]
for i in range(current_num_images):
ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
_current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
_current_ip_hidden_states = attn.batch_to_head_dim(_current_ip_hidden_states)
mask_downsample = IPAdapterMaskProcessor.downsample(
mask[:, i, :, :],
batch_size,
_current_ip_hidden_states.shape[1],
_current_ip_hidden_states.shape[2],
)
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
else:
ip_key = to_k_ip(current_ip_hidden_states)
ip_value = to_v_ip(current_ip_hidden_states)
ip_key = attn.head_to_batch_dim(ip_key)
ip_value = attn.head_to_batch_dim(ip_value)
ip_attention_probs = attn.get_attention_scores(query, ip_key, None)
current_ip_hidden_states = torch.bmm(ip_attention_probs, ip_value)
current_ip_hidden_states = attn.batch_to_head_dim(current_ip_hidden_states)
hidden_states = hidden_states + scale * current_ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class AttnProcessor2_0:
r"""
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
"""
def __init__(self):
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
def __call__(
self,
attn,
hidden_states: torch.Tensor,
encoder_hidden_states = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
region_prompt = None,
ip_adapter_masks = None,
*args,
**kwargs,
) -> torch.Tensor:
if len(args) > 0 or kwargs.get("scale", None) is not None:
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
deprecate("scale", "1.0.0", deprecation_message)
residual = hidden_states
#_,img_sequence_length,_ = hidden_states.shape
img_sequence_length= hidden_states.shape[1]
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
is_xattn = False
if encoder_hidden_states is not None and region_prompt is not None:
is_xattn = True
region_state = region_prompt["region_state"]
weight_func = region_prompt["weight_func"]
sigma = region_prompt["sigma"]
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if is_xattn and isinstance(region_state, dict):
#w = attn.head_to_batch_dim(w,out_dim = 4).transpose(1, 2)
hidden_states = scaled_dot_product_attention_regionstate(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,weight_func = weight_func,region_state=region_state[img_sequence_length].to(query.device),sigma = sigma)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class IPAdapterAttnProcessor2_0(torch.nn.Module):
r"""
Attention processor for IP-Adapter for PyTorch 2.0.
Args:
hidden_size (`int`):
The hidden size of the attention layer.
cross_attention_dim (`int`):
The number of channels in the `encoder_hidden_states`.
num_tokens (`int`, `Tuple[int]` or `List[int]`, defaults to `(4,)`):
The context length of the image features.
scale (`float` or `List[float]`, defaults to 1.0):
the weight scale of image prompt.
"""
def __init__(self, hidden_size, cross_attention_dim=None, num_tokens=(4,), scale=1.0):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
f"{self.__class__.__name__} requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
)
self.hidden_size = hidden_size
self.cross_attention_dim = cross_attention_dim
if not isinstance(num_tokens, (tuple, list)):
num_tokens = [num_tokens]
self.num_tokens = num_tokens
if not isinstance(scale, list):
scale = [scale] * len(num_tokens)
if len(scale) != len(num_tokens):
raise ValueError("`scale` should be a list of integers with the same length as `num_tokens`.")
self.scale = scale
self.to_k_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
self.to_v_ip = nn.ModuleList(
[nn.Linear(cross_attention_dim, hidden_size, bias=False) for _ in range(len(num_tokens))]
)
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale=1.0,
region_prompt = None,
ip_adapter_masks = None,
):
residual = hidden_states
#_,img_sequence_length,_ = hidden_states.shape
img_sequence_length= hidden_states.shape[1]
is_xattn = False
if encoder_hidden_states is not None and region_prompt is not None:
is_xattn = True
region_state = region_prompt["region_state"]
weight_func = region_prompt["weight_func"]
sigma = region_prompt["sigma"]
# separate ip_hidden_states from encoder_hidden_states
if encoder_hidden_states is not None:
if isinstance(encoder_hidden_states, tuple):
encoder_hidden_states, ip_hidden_states = encoder_hidden_states
else:
deprecation_message = (
"You have passed a tensor as `encoder_hidden_states`. This is deprecated and will be removed in a future release."
" Please make sure to update your script to pass `encoder_hidden_states` as a tuple to suppress this warning."
)
deprecate("encoder_hidden_states not a tuple", "1.0.0", deprecation_message, standard_warn=False)
end_pos = encoder_hidden_states.shape[1] - self.num_tokens[0]
encoder_hidden_states, ip_hidden_states = (
encoder_hidden_states[:, :end_pos, :],
[encoder_hidden_states[:, end_pos:, :]],
)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
if attention_mask is not None:
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
# scaled_dot_product_attention expects attention_mask shape to be
# (batch, heads, source_length, target_length)
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
inner_dim = key.shape[-1]
head_dim = inner_dim // attn.heads
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
if is_xattn and isinstance(region_state, dict):
#w = attn.head_to_batch_dim(w,out_dim = 4).transpose(1, 2)
hidden_states = scaled_dot_product_attention_regionstate(query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,weight_func = weight_func,region_state=region_state[img_sequence_length].to(query.device),sigma = sigma)
else:
hidden_states = F.scaled_dot_product_attention(
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
hidden_states = hidden_states.to(query.dtype)
''''# for ip-adapter
for current_ip_hidden_states, scale, to_k_ip, to_v_ip in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip
):
ip_key = to_k_ip(current_ip_hidden_states)
ip_value = to_v_ip(current_ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
current_ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + scale * current_ip_hidden_states'''
if ip_adapter_masks is not None:
if not isinstance(ip_adapter_masks, List):
# for backward compatibility, we accept `ip_adapter_mask` as a tensor of shape [num_ip_adapter, 1, height, width]
ip_adapter_masks = list(ip_adapter_masks.unsqueeze(1))
if not (len(ip_adapter_masks) == len(self.scale) == len(ip_hidden_states)):
raise ValueError(
f"Length of ip_adapter_masks array ({len(ip_adapter_masks)}) must match "
f"length of self.scale array ({len(self.scale)}) and number of ip_hidden_states "
f"({len(ip_hidden_states)})"
)
else:
for index, (mask, scale, ip_state) in enumerate(zip(ip_adapter_masks, self.scale, ip_hidden_states)):
if not isinstance(mask, torch.Tensor) or mask.ndim != 4:
raise ValueError(
"Each element of the ip_adapter_masks array should be a tensor with shape "
"[1, num_images_for_ip_adapter, height, width]."
" Please use `IPAdapterMaskProcessor` to preprocess your mask"
)
if mask.shape[1] != ip_state.shape[1]:
raise ValueError(
f"Number of masks ({mask.shape[1]}) does not match "
f"number of ip images ({ip_state.shape[1]}) at index {index}"
)
if isinstance(scale, list) and not len(scale) == mask.shape[1]:
raise ValueError(
f"Number of masks ({mask.shape[1]}) does not match "
f"number of scales ({len(scale)}) at index {index}"
)
else:
ip_adapter_masks = [None] * len(self.scale)
# for ip-adapter
for current_ip_hidden_states, scale, to_k_ip, to_v_ip, mask in zip(
ip_hidden_states, self.scale, self.to_k_ip, self.to_v_ip, ip_adapter_masks
):
skip = False
if isinstance(scale, list):
if all(s == 0 for s in scale):
skip = True
elif scale == 0:
skip = True
if not skip:
if mask is not None:
if not isinstance(scale, list):
scale = [scale] * mask.shape[1]
current_num_images = mask.shape[1]
for i in range(current_num_images):
ip_key = to_k_ip(current_ip_hidden_states[:, i, :, :])
ip_value = to_v_ip(current_ip_hidden_states[:, i, :, :])
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
_current_ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
_current_ip_hidden_states = _current_ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
_current_ip_hidden_states = _current_ip_hidden_states.to(query.dtype)
mask_downsample = IPAdapterMaskProcessor.downsample(
mask[:, i, :, :],
batch_size,
_current_ip_hidden_states.shape[1],
_current_ip_hidden_states.shape[2],
)
mask_downsample = mask_downsample.to(dtype=query.dtype, device=query.device)
hidden_states = hidden_states + scale[i] * (_current_ip_hidden_states * mask_downsample)
else:
ip_key = to_k_ip(current_ip_hidden_states)
ip_value = to_v_ip(current_ip_hidden_states)
ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
# the output of sdp = (batch, num_heads, seq_len, head_dim)
# TODO: add support for attn.scale when we move to Torch 2.1
current_ip_hidden_states = F.scaled_dot_product_attention(
query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False
)
current_ip_hidden_states = current_ip_hidden_states.transpose(1, 2).reshape(
batch_size, -1, attn.heads * head_dim
)
current_ip_hidden_states = current_ip_hidden_states.to(query.dtype)
hidden_states = hidden_states + scale * current_ip_hidden_states
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states