Spaces:
Running
Running
File size: 87,388 Bytes
7ef93e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 |
import importlib
import inspect
import math
from pathlib import Path
import re
from collections import defaultdict
from typing import List, Optional, Union
import cv2
import time
import k_diffusion
import numpy as np
import PIL
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from .external_k_diffusion import CompVisDenoiser, CompVisVDenoiser
#from .prompt_parser import FrozenCLIPEmbedderWithCustomWords
from torch import einsum
from torch.autograd.function import Function
from diffusers.utils import PIL_INTERPOLATION, is_accelerate_available
from diffusers.utils import logging
from diffusers.utils.torch_utils import randn_tensor,is_compiled_module
from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
from safetensors.torch import load_file
from diffusers import ControlNetModel
from PIL import Image
import torchvision.transforms as transforms
from diffusers.models import AutoencoderKL, ImageProjection
from .ip_adapter import IPAdapterMixin
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
import gc
from .t2i_adapter import preprocessing_t2i_adapter,default_height_width
from .encoder_prompt_modify import encode_prompt_function
from .encode_region_map_function import encode_region_map
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
from diffusers.loaders import LoraLoaderMixin
from diffusers.loaders import TextualInversionLoaderMixin
def get_image_size(image):
height, width = None, None
if isinstance(image, Image.Image):
return image.size
elif isinstance(image, np.ndarray):
height, width = image.shape[:2]
return (width, height)
elif torch.is_tensor(image):
#RGB image
if len(image.shape) == 3:
_, height, width = image.shape
else:
height, width = image.shape
return (width, height)
else:
raise TypeError("The image must be an instance of PIL.Image, numpy.ndarray, or torch.Tensor.")
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
# from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
"""
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
"""
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
# rescale the results from guidance (fixes overexposure)
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
return noise_cfg
class ModelWrapper:
def __init__(self, model, alphas_cumprod):
self.model = model
self.alphas_cumprod = alphas_cumprod
def apply_model(self, *args, **kwargs):
if len(args) == 3:
encoder_hidden_states = args[-1]
args = args[:2]
if kwargs.get("cond", None) is not None:
encoder_hidden_states = kwargs.pop("cond")
return self.model(
*args, encoder_hidden_states=encoder_hidden_states, **kwargs
).sample
class StableDiffusionPipeline(IPAdapterMixin,DiffusionPipeline,StableDiffusionMixin,LoraLoaderMixin,TextualInversionLoaderMixin):
_optional_components = ["safety_checker", "feature_extractor"]
def __init__(
self,
vae,
text_encoder,
tokenizer,
unet,
scheduler,
feature_extractor,
image_encoder = None,
):
super().__init__()
# get correct sigmas from LMS
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
feature_extractor=feature_extractor,
image_encoder=image_encoder,
)
self.controlnet = None
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
self.mask_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
)
self.setup_unet(self.unet)
#self.setup_text_encoder()
'''def setup_text_encoder(self, n=1, new_encoder=None):
if new_encoder is not None:
self.text_encoder = new_encoder
self.prompt_parser = FrozenCLIPEmbedderWithCustomWords(self.tokenizer, self.text_encoder,n)'''
#self.prompt_parser.CLIP_stop_at_last_layers = n
def setup_unet(self, unet):
unet = unet.to(self.device)
model = ModelWrapper(unet, self.scheduler.alphas_cumprod)
if self.scheduler.config.prediction_type == "v_prediction":
self.k_diffusion_model = CompVisVDenoiser(model)
else:
self.k_diffusion_model = CompVisDenoiser(model)
def get_scheduler(self, scheduler_type: str):
library = importlib.import_module("k_diffusion")
sampling = getattr(library, "sampling")
return getattr(sampling, scheduler_type)
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
dtype = next(self.image_encoder.parameters()).dtype
if not isinstance(image, torch.Tensor):
image = self.feature_extractor(image, return_tensors="pt").pixel_values
image = image.to(device=device, dtype=dtype)
if output_hidden_states:
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_enc_hidden_states = self.image_encoder(
torch.zeros_like(image), output_hidden_states=True
).hidden_states[-2]
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
num_images_per_prompt, dim=0
)
return image_enc_hidden_states, uncond_image_enc_hidden_states
else:
image_embeds = self.image_encoder(image).image_embeds
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
uncond_image_embeds = torch.zeros_like(image_embeds)
return image_embeds, uncond_image_embeds
def prepare_ip_adapter_image_embeds(
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
):
if ip_adapter_image_embeds is None:
if not isinstance(ip_adapter_image, list):
ip_adapter_image = [ip_adapter_image]
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
raise ValueError(
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
)
image_embeds = []
for single_ip_adapter_image, image_proj_layer in zip(
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
):
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
single_image_embeds, single_negative_image_embeds = self.encode_image(
single_ip_adapter_image, device, 1, output_hidden_state
)
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
single_negative_image_embeds = torch.stack(
[single_negative_image_embeds] * num_images_per_prompt, dim=0
)
if do_classifier_free_guidance:
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
single_image_embeds = single_image_embeds.to(device)
image_embeds.append(single_image_embeds)
else:
repeat_dims = [1]
image_embeds = []
for single_image_embeds in ip_adapter_image_embeds:
if do_classifier_free_guidance:
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
single_negative_image_embeds = single_negative_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
)
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
else:
single_image_embeds = single_image_embeds.repeat(
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
)
image_embeds.append(single_image_embeds)
return image_embeds
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
`attention_head_dim` must be a multiple of `slice_size`.
"""
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(slice_size)
def disable_attention_slicing(self):
r"""
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
back to computing attention in one step.
"""
# set slice_size = `None` to disable `attention slicing`
self.enable_attention_slicing(None)
def enable_sequential_cpu_offload(self, gpu_id=0):
r"""
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`")
device = torch.device(f"cuda:{gpu_id}")
for cpu_offloaded_model in [
self.unet,
self.text_encoder,
self.vae,
self.safety_checker,
]:
if cpu_offloaded_model is not None:
cpu_offload(cpu_offloaded_model, device)
@property
def _execution_device(self):
r"""
Returns the device on which the pipeline's models will be executed. After calling
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
hooks.
"""
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
return self.device
for module in self.unet.modules():
if (
hasattr(module, "_hf_hook")
and hasattr(module._hf_hook, "execution_device")
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device)
return self.device
def decode_latents(self, latents):
latents = latents.to(self.device, dtype=self.vae.dtype)
#latents = 1 / 0.18215 * latents
latents = 1 / self.vae.config.scaling_factor * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
return image
def _default_height_width(self, height, width, image):
if isinstance(image, list):
image = image[0]
if height is None:
if isinstance(image, PIL.Image.Image):
height = image.height
elif isinstance(image, torch.Tensor):
height = image.shape[3]
height = (height // 8) * 8 # round down to nearest multiple of 8
if width is None:
if isinstance(image, PIL.Image.Image):
width = image.width
elif isinstance(image, torch.Tensor):
width = image.shape[2]
width = (width // 8) * 8 # round down to nearest multiple of 8
return height, width
def check_inputs(self, prompt, height, width, callback_steps):
if not isinstance(prompt, str) and not isinstance(prompt, list):
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
f"`height` and `width` have to be divisible by 8 but are {height} and {width}."
)
if (callback_steps is None) or (
callback_steps is not None
and (not isinstance(callback_steps, int) or callback_steps <= 0)
):
raise ValueError(
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
f" {type(callback_steps)}."
)
@property
def do_classifier_free_guidance(self):
return self._do_classifier_free_guidance and self.unet.config.time_cond_proj_dim is None
def setup_controlnet(self,controlnet):
if isinstance(controlnet, (list, tuple)):
controlnet = MultiControlNetModel(controlnet)
self.register_modules(
controlnet=controlnet,
)
def preprocess_controlnet(self,controlnet_conditioning_scale,control_guidance_start,control_guidance_end,image,width,height,num_inference_steps,batch_size,num_images_per_prompt):
controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
control_guidance_start = len(control_guidance_end) * [control_guidance_start]
elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
control_guidance_start, control_guidance_end = (
mult * [control_guidance_start],
mult * [control_guidance_end],
)
if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = False or global_pool_conditions
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size,
num_images_per_prompt=num_images_per_prompt,
device=self._execution_device,
dtype=controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
for image_ in image:
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size,
num_images_per_prompt=num_images_per_prompt,
device=self._execution_device,
dtype=controlnet.dtype,
do_classifier_free_guidance=self.do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 7.2 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(num_inference_steps):
keeps = [
1.0 - float(i / num_inference_steps < s or (i + 1) / num_inference_steps > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
return image,controlnet_keep,guess_mode,controlnet_conditioning_scale
def prepare_latents(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
):
shape = (batch_size, num_channels_latents, int(height) // self.vae_scale_factor, int(width) // self.vae_scale_factor)
if latents is None:
if device.type == "mps":
# randn does not work reproducibly on mps
latents = torch.randn(
shape, generator=generator, device="cpu", dtype=dtype
).to(device)
else:
latents = torch.randn(
shape, generator=generator, device=device, dtype=dtype
)
else:
# if latents.shape != shape:
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
return latents
def preprocess(self, image):
if isinstance(image, torch.Tensor):
return image
elif isinstance(image, PIL.Image.Image):
image = [image]
if isinstance(image[0], PIL.Image.Image):
w, h = image[0].size
w, h = map(lambda x: x - x % 8, (w, h)) # resize to integer multiple of 8
image = [
np.array(i.resize((w, h), resample=PIL_INTERPOLATION["lanczos"]))[
None, :
]
for i in image
]
image = np.concatenate(image, axis=0)
image = np.array(image).astype(np.float32) / 255.0
image = image.transpose(0, 3, 1, 2)
image = 2.0 * image - 1.0
image = torch.from_numpy(image)
elif isinstance(image[0], torch.Tensor):
image = torch.cat(image, dim=0)
return image
def prepare_image(
self,
image,
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
self.control_image_processor = VaeImageProcessor(
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
)
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
#image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
def numpy_to_pil(self,images):
r"""
Convert a numpy image or a batch of images to a PIL image.
"""
if images.ndim == 3:
images = images[None, ...]
#images = (images * 255).round().astype("uint8")
images = np.clip((images * 255).round(), 0, 255).astype("uint8")
if images.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
else:
pil_images = [Image.fromarray(image) for image in images]
return pil_images
def latent_to_image(self,latent,output_type):
image = self.decode_latents(latent)
if output_type == "pil":
image = self.numpy_to_pil(image)
if len(image) > 1:
return image
return image[0]
@torch.no_grad()
def img2img(
self,
prompt: Union[str, List[str]],
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
generator: Optional[torch.Generator] = None,
image: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
latents=None,
strength=1.0,
region_map_state=None,
sampler_name="",
sampler_opt={},
start_time=-1,
timeout=180,
scale_ratio=8.0,
latent_processing = 0,
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
upscale=False,
upscale_x: float = 2.0,
upscale_method: str = "bicubic",
upscale_antialias: bool = False,
upscale_denoising_strength: int = 0.7,
width = None,
height = None,
seed = 0,
sampler_name_hires="",
sampler_opt_hires= {},
latent_upscale_processing = False,
ip_adapter_image = None,
control_img = None,
controlnet_conditioning_scale = None,
control_guidance_start = None,
control_guidance_end = None,
image_t2i_adapter : Optional[PipelineImageInput] = None,
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
adapter_conditioning_factor: float = 1.0,
guidance_rescale: float = 0.0,
cross_attention_kwargs = None,
clip_skip = None,
long_encode = 0,
num_images_per_prompt = 1,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
):
if isinstance(sampler_name, str):
sampler = self.get_scheduler(sampler_name)
else:
sampler = sampler_name
if height is None:
_,height = get_image_size(image)
height = int((height // 8)*8)
if width is None:
width,_ = get_image_size(image)
width = int((width // 8)*8)
if image_t2i_adapter is not None:
height, width = default_height_width(self,height, width, image_t2i_adapter)
if image is not None:
image = self.preprocess(image)
image = image.to(self.vae.device, dtype=self.vae.dtype)
init_latents = self.vae.encode(image).latent_dist.sample(generator)
latents = 0.18215 * init_latents
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
latents = latents.to(device, dtype=self.unet.dtype)
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
'''if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")'''
# 3. Encode input prompt
text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
self,
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
lora_scale = lora_scale,
clip_skip = clip_skip,
long_encode = long_encode,
)
if self.do_classifier_free_guidance:
text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])
#text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
text_embeddings = text_embeddings.to(self.unet.dtype)
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
sigma_sched = sigmas[t_start:]
noise = randn_tensor(
latents.shape,
generator=generator,
device=device,
dtype=text_embeddings.dtype,
)
latents = latents.to(device)
latents = latents + noise * (sigma_sched[0]**2 + 1) ** 0.5
#latents = latents + noise * sigma_sched[0] #Nearly
steps_denoising = len(sigma_sched)
# 5. Prepare latent variables
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
region_state = encode_region_map(
self,
region_map_state,
width = width,
height = height,
num_images_per_prompt = num_images_per_prompt,
text_ids=text_input_ids,
)
if cross_attention_kwargs is None:
cross_attention_kwargs ={}
controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale
control_guidance_start_copy = control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start
control_guidance_end_copy = control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end
guess_mode = False
if self.controlnet is not None:
img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,len(sigma_sched),batch_size,num_images_per_prompt)
#print(len(controlnet_keep))
#controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
#sp_control = 1
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 6.1 Add image embeds for IP-Adapter
added_cond_kwargs = (
{"image_embeds": image_embeds}
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
else None
)
#if controlnet_img is not None:
#controlnet_img_processing = controlnet_img.convert("RGB")
#transform = transforms.Compose([transforms.PILToTensor()])
#controlnet_img_processing = transform(controlnet_img)
#controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
#controlnet_img = torch.from_numpy(controlnet_img).half()
#controlnet_img = controlnet_img.unsqueeze(0)
#controlnet_img = controlnet_img.repeat_interleave(3, dim=0)
#controlnet_img=controlnet_img.to(device)
#controlnet_img = controlnet_img.repeat_interleave(4 // len(controlnet_img), 0)
if latent_processing == 1:
latents_process = [self.latent_to_image(latents,output_type)]
lst_latent_sigma = []
step_control = -1
adapter_state = None
adapter_sp_count = []
if image_t2i_adapter is not None:
adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
def model_fn(x, sigma):
nonlocal step_control,lst_latent_sigma,adapter_sp_count
if start_time > 0 and timeout > 0:
assert (time.time() - start_time) < timeout, "inference process timed out"
latent_model_input = torch.cat([x] * 2) if self.do_classifier_free_guidance else x
region_prompt = {
"region_state": region_state,
"sigma": sigma[0],
"weight_func": weight_func,
}
cross_attention_kwargs["region_prompt"] = region_prompt
#print(self.k_diffusion_model.sigma_to_t(sigma[0]))
if latent_model_input.dtype != text_embeddings.dtype:
latent_model_input = latent_model_input.to(text_embeddings.dtype)
ukwargs = {}
down_intrablock_additional_residuals = None
if adapter_state is not None:
if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
else:
down_intrablock_additional_residuals = None
sigma_string_t2i = str(sigma.item())
if sigma_string_t2i not in adapter_sp_count:
adapter_sp_count.append(sigma_string_t2i)
if self.controlnet is not None :
sigma_string = str(sigma.item())
if sigma_string not in lst_latent_sigma:
#sigmas_sp = sigma.detach().clone()
step_control+=1
lst_latent_sigma.append(sigma_string)
if isinstance(controlnet_keep[step_control], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
down_block_res_samples = None
mid_block_res_sample = None
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input / ((sigma**2 + 1) ** 0.5),
self.k_diffusion_model.sigma_to_t(sigma),
encoder_hidden_states=text_embeddings,
controlnet_cond=img_control,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and self.do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
ukwargs ={
"down_block_additional_residuals": down_block_res_samples,
"mid_block_additional_residual":mid_block_res_sample,
}
noise_pred = self.k_diffusion_model(
latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs = cross_attention_kwargs,down_intrablock_additional_residuals = down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
)
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
if latent_processing == 1:
latents_process.append(self.latent_to_image(noise_pred,output_type))
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
return noise_pred
sampler_args = self.get_sampler_extra_args_i2i(sigma_sched,len(sigma_sched),sampler_opt,latents,seed, sampler)
latents = sampler(model_fn, latents, **sampler_args)
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
gc.collect()
if upscale:
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
target_height = int(height * upscale_x // vae_scale_factor )* 8
target_width = int(width * upscale_x // vae_scale_factor)*8
latents = torch.nn.functional.interpolate(
latents,
size=(
int(target_height // vae_scale_factor),
int(target_width // vae_scale_factor),
),
mode=upscale_method,
antialias=upscale_antialias,
)
#if controlnet_img is not None:
#controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
#controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
#region_map_state = apply_size_sketch(int(target_width),int(target_height),region_map_state)
latent_reisze= self.img2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
latents=latents,
strength=upscale_denoising_strength,
sampler_name=sampler_name_hires,
sampler_opt=sampler_opt_hires,
region_map_state=region_map_state,
latent_processing = latent_upscale_processing,
width = int(target_width),
height = int(target_height),
seed = seed,
ip_adapter_image = ip_adapter_image,
control_img = control_img,
controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
control_guidance_start = control_guidance_start_copy,
control_guidance_end = control_guidance_end_copy,
image_t2i_adapter= image_t2i_adapter,
adapter_conditioning_scale = adapter_conditioning_scale,
adapter_conditioning_factor = adapter_conditioning_factor,
guidance_rescale = guidance_rescale,
cross_attention_kwargs = cross_attention_kwargs,
clip_skip = clip_skip,
long_encode = long_encode,
num_images_per_prompt = num_images_per_prompt,
)
'''if latent_processing == 1:
latents = latents_process.copy()
images = []
for i in latents:
images.append(self.decode_latents(i))
image = []
if output_type == "pil":
for i in images:
image.append(self.numpy_to_pil(i))
image[-1] = latent_reisze
return image'''
if latent_processing == 1:
latents_process= latents_process+latent_reisze
return latents_process
torch.cuda.empty_cache()
gc.collect()
return latent_reisze
'''if latent_processing == 1:
latents = latents_process.copy()
images = []
for i in latents:
images.append(self.decode_latents(i))
image = []
# 10. Convert to PIL
if output_type == "pil":
for i in images:
image.append(self.numpy_to_pil(i))
else:
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)'''
if latent_processing == 1:
return latents_process
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
gc.collect()
return [self.latent_to_image(latents,output_type)]
def get_sigmas(self, steps, params):
discard_next_to_last_sigma = params.get("discard_next_to_last_sigma", False)
steps += 1 if discard_next_to_last_sigma else 0
if params.get("scheduler", None) == "karras":
sigma_min, sigma_max = (
self.k_diffusion_model.sigmas[0].item(),
self.k_diffusion_model.sigmas[-1].item(),
)
sigmas = k_diffusion.sampling.get_sigmas_karras(
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
)
elif params.get("scheduler", None) == "exponential":
sigma_min, sigma_max = (
self.k_diffusion_model.sigmas[0].item(),
self.k_diffusion_model.sigmas[-1].item(),
)
sigmas = k_diffusion.sampling.get_sigmas_exponential(
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
)
elif params.get("scheduler", None) == "polyexponential":
sigma_min, sigma_max = (
self.k_diffusion_model.sigmas[0].item(),
self.k_diffusion_model.sigmas[-1].item(),
)
sigmas = k_diffusion.sampling.get_sigmas_polyexponential(
n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=self.device
)
else:
sigmas = self.k_diffusion_model.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def create_noise_sampler(self, x, sigmas, p,seed):
"""For DPM++ SDE: manually create noise sampler to enable deterministic results across different batch sizes"""
from k_diffusion.sampling import BrownianTreeNoiseSampler
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas.max()
#current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size]
return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=seed)
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
def get_sampler_extra_args_t2i(self, sigmas, eta, steps,sampler_opt,latents,seed, func):
extra_params_kwargs = {}
if "eta" in inspect.signature(func).parameters:
extra_params_kwargs["eta"] = eta
if "sigma_min" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_min"] = sigmas[0].item()
extra_params_kwargs["sigma_max"] = sigmas[-1].item()
if "n" in inspect.signature(func).parameters:
extra_params_kwargs["n"] = steps
else:
extra_params_kwargs["sigmas"] = sigmas
if sampler_opt.get('brownian_noise', False):
noise_sampler = self.create_noise_sampler(latents, sigmas, steps,seed)
extra_params_kwargs['noise_sampler'] = noise_sampler
if sampler_opt.get('solver_type', None) == 'heun':
extra_params_kwargs['solver_type'] = 'heun'
return extra_params_kwargs
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/blob/48a15821de768fea76e66f26df83df3fddf18f4b/modules/sd_samplers.py#L454
def get_sampler_extra_args_i2i(self, sigmas,steps,sampler_opt,latents,seed, func):
extra_params_kwargs = {}
if "sigma_min" in inspect.signature(func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs["sigma_min"] = sigmas[-2]
if "sigma_max" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_max"] = sigmas[0]
if "n" in inspect.signature(func).parameters:
extra_params_kwargs["n"] = len(sigmas) - 1
if "sigma_sched" in inspect.signature(func).parameters:
extra_params_kwargs["sigma_sched"] = sigmas
if "sigmas" in inspect.signature(func).parameters:
extra_params_kwargs["sigmas"] = sigmas
if sampler_opt.get('brownian_noise', False):
noise_sampler = self.create_noise_sampler(latents, sigmas, steps,seed)
extra_params_kwargs['noise_sampler'] = noise_sampler
if sampler_opt.get('solver_type', None) == 'heun':
extra_params_kwargs['solver_type'] = 'heun'
return extra_params_kwargs
@torch.no_grad()
def txt2img(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
callback_steps: Optional[int] = 1,
upscale=False,
upscale_x: float = 2.0,
upscale_method: str = "bicubic",
upscale_antialias: bool = False,
upscale_denoising_strength: int = 0.7,
region_map_state=None,
sampler_name="",
sampler_opt={},
start_time=-1,
timeout=180,
latent_processing = 0,
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
seed = 0,
sampler_name_hires= "",
sampler_opt_hires= {},
latent_upscale_processing = False,
ip_adapter_image = None,
control_img = None,
controlnet_conditioning_scale = None,
control_guidance_start = None,
control_guidance_end = None,
image_t2i_adapter : Optional[PipelineImageInput] = None,
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
adapter_conditioning_factor: float = 1.0,
guidance_rescale: float = 0.0,
cross_attention_kwargs = None,
clip_skip = None,
long_encode = 0,
num_images_per_prompt = 1,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
):
height, width = self._default_height_width(height, width, None)
if isinstance(sampler_name, str):
sampler = self.get_scheduler(sampler_name)
else:
sampler = sampler_name
# 1. Check inputs. Raise error if not correct
if image_t2i_adapter is not None:
height, width = default_height_width(self,height, width, image_t2i_adapter)
#print(default_height_width(self,height, width, image_t2i_adapter))
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
'''do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")'''
lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
'''if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")'''
# 3. Encode input prompt
text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
self,
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
lora_scale = lora_scale,
clip_skip = clip_skip,
long_encode = long_encode,
)
if self.do_classifier_free_guidance:
text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])
# 3. Encode input prompt
#text_ids, text_embeddings = self.prompt_parser([negative_prompt, prompt])
text_embeddings = text_embeddings.to(self.unet.dtype)
# 4. Prepare timesteps
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
# 5. Prepare latent variables
num_channels_latents = self.unet.config.in_channels
latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)
latents = latents * (sigmas[0]**2 + 1) ** 0.5
#latents = latents * sigmas[0]#Nearly
steps_denoising = len(sigmas)
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
region_state = encode_region_map(
self,
region_map_state,
width = width,
height = height,
num_images_per_prompt = num_images_per_prompt,
text_ids=text_input_ids,
)
if cross_attention_kwargs is None:
cross_attention_kwargs ={}
controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale
control_guidance_start_copy = control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start
control_guidance_end_copy = control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end
guess_mode = False
if self.controlnet is not None:
img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,num_inference_steps,batch_size,num_images_per_prompt)
#print(len(controlnet_keep))
#controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
#sp_control = 1
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 6.1 Add image embeds for IP-Adapter
added_cond_kwargs = (
{"image_embeds": image_embeds}
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
else None
)
#if controlnet_img is not None:
#controlnet_img_processing = controlnet_img.convert("RGB")
#transform = transforms.Compose([transforms.PILToTensor()])
#controlnet_img_processing = transform(controlnet_img)
#controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
if latent_processing == 1:
latents_process = [self.latent_to_image(latents,output_type)]
#sp_find_new = None
lst_latent_sigma = []
step_control = -1
adapter_state = None
adapter_sp_count = []
if image_t2i_adapter is not None:
adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
def model_fn(x, sigma):
nonlocal step_control,lst_latent_sigma,adapter_sp_count
if start_time > 0 and timeout > 0:
assert (time.time() - start_time) < timeout, "inference process timed out"
latent_model_input = torch.cat([x] * 2) if self.do_classifier_free_guidance else x
region_prompt = {
"region_state": region_state,
"sigma": sigma[0],
"weight_func": weight_func,
}
cross_attention_kwargs["region_prompt"] = region_prompt
#print(self.k_diffusion_model.sigma_to_t(sigma[0]))
if latent_model_input.dtype != text_embeddings.dtype:
latent_model_input = latent_model_input.to(text_embeddings.dtype)
ukwargs = {}
down_intrablock_additional_residuals = None
if adapter_state is not None:
if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
else:
down_intrablock_additional_residuals = None
sigma_string_t2i = str(sigma.item())
if sigma_string_t2i not in adapter_sp_count:
adapter_sp_count.append(sigma_string_t2i)
if self.controlnet is not None :
sigma_string = str(sigma.item())
if sigma_string not in lst_latent_sigma:
#sigmas_sp = sigma.detach().clone()
step_control+=1
lst_latent_sigma.append(sigma_string)
if isinstance(controlnet_keep[step_control], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
down_block_res_samples = None
mid_block_res_sample = None
down_block_res_samples, mid_block_res_sample = self.controlnet(
latent_model_input / ((sigma**2 + 1) ** 0.5),
self.k_diffusion_model.sigma_to_t(sigma),
encoder_hidden_states=text_embeddings,
controlnet_cond=img_control,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and self.do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
ukwargs ={
"down_block_additional_residuals": down_block_res_samples,
"mid_block_additional_residual":mid_block_res_sample,
}
noise_pred = self.k_diffusion_model(
latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs=cross_attention_kwargs,down_intrablock_additional_residuals=down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
)
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
if latent_processing == 1:
latents_process.append(self.latent_to_image(noise_pred,output_type))
# noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=0.7)
return noise_pred
extra_args = self.get_sampler_extra_args_t2i(
sigmas, eta, num_inference_steps,sampler_opt,latents,seed, sampler
)
latents = sampler(model_fn, latents, **extra_args)
#latents = latents_process[0]
#print(len(latents_process))
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
gc.collect()
if upscale:
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
target_height = int(height * upscale_x // vae_scale_factor )* 8
target_width = int(width * upscale_x // vae_scale_factor)*8
latents = torch.nn.functional.interpolate(
latents,
size=(
int(target_height // vae_scale_factor),
int(target_width // vae_scale_factor),
),
mode=upscale_method,
antialias=upscale_antialias,
)
#if controlnet_img is not None:
#controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
#controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
latent_reisze= self.img2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
latents=latents,
strength=upscale_denoising_strength,
sampler_name=sampler_name_hires,
sampler_opt=sampler_opt_hires,
region_map_state = region_map_state,
latent_processing = latent_upscale_processing,
width = int(target_width),
height = int(target_height),
seed = seed,
ip_adapter_image = ip_adapter_image,
control_img = control_img,
controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
control_guidance_start = control_guidance_start_copy,
control_guidance_end = control_guidance_end_copy,
image_t2i_adapter= image_t2i_adapter,
adapter_conditioning_scale = adapter_conditioning_scale,
adapter_conditioning_factor = adapter_conditioning_factor,
guidance_rescale = guidance_rescale,
cross_attention_kwargs = cross_attention_kwargs,
clip_skip = clip_skip,
long_encode = long_encode,
num_images_per_prompt = num_images_per_prompt,
)
'''if latent_processing == 1:
latents = latents_process.copy()
images = []
for i in latents:
images.append(self.decode_latents(i))
image = []
if output_type == "pil":
for i in images:
image.append(self.numpy_to_pil(i))
image[-1] = latent_reisze
return image'''
if latent_processing == 1:
latents_process= latents_process+latent_reisze
return latents_process
torch.cuda.empty_cache()
gc.collect()
return latent_reisze
# 8. Post-processing
'''if latent_processing == 1:
latents = latents_process.copy()
images = []
for i in latents:
images.append(self.decode_latents(i))
image = []
# 10. Convert to PIL
if output_type == "pil":
for i in images:
image.append(self.numpy_to_pil(i))
else:
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)'''
if latent_processing == 1:
return latents_process
return [self.latent_to_image(latents,output_type)]
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
if isinstance(generator, list):
image_latents = [
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
for i in range(image.shape[0])
]
image_latents = torch.cat(image_latents, dim=0)
else:
image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
image_latents = self.vae.config.scaling_factor * image_latents
return image_latents
def prepare_mask_latents(
self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
):
# resize the mask to latents shape as we concatenate the mask to the latents
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
# and half precision
mask = torch.nn.functional.interpolate(
mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
)
mask = mask.to(device=device, dtype=dtype)
masked_image = masked_image.to(device=device, dtype=dtype)
if masked_image.shape[1] == 4:
masked_image_latents = masked_image
else:
masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
# duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
if mask.shape[0] < batch_size:
if not batch_size % mask.shape[0] == 0:
raise ValueError(
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
" of masks that you pass is divisible by the total requested batch size."
)
mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
if masked_image_latents.shape[0] < batch_size:
if not batch_size % masked_image_latents.shape[0] == 0:
raise ValueError(
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
" Make sure the number of images that you pass is divisible by the total requested batch size."
)
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
masked_image_latents = (
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
)
# aligning device to prevent device errors when concating it with the latent model input
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
return mask, masked_image_latents
'''def get_image_latents(self,batch_size,image,device,dtype,generator):
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
image_latents = image
else:
image_latents = self._encode_vae_image(image=image, generator=generator)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
return image_latents'''
def _sigma_to_alpha_sigma_t(self, sigma):
alpha_t = 1 / ((sigma**2 + 1) ** 0.5)
sigma_t = sigma * alpha_t
return alpha_t, sigma_t
def add_noise(self,init_latents_proper,noise,sigma):
if isinstance(sigma, torch.Tensor) and sigma.numel() > 1:
sigma,_ = sigma.sort(descending=True)
sigma = sigma[0].item()
#alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
init_latents_proper = init_latents_proper + sigma * noise
return init_latents_proper
def prepare_latents_inpating(
self,
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
latents=None,
image=None,
sigma=None,
is_strength_max=True,
return_noise=False,
return_image_latents=False,
):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if (image is None or sigma is None) and not is_strength_max:
raise ValueError(
"Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
"However, either the image or the noise sigma has not been provided."
)
if return_image_latents or (latents is None and not is_strength_max):
image = image.to(device=device, dtype=dtype)
if image.shape[1] == 4:
image_latents = image
else:
image_latents = self._encode_vae_image(image=image, generator=generator)
image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
if latents is None:
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# if strength is 1. then initialise the latents to noise, else initial to image + noise
latents = noise if is_strength_max else self.add_noise(image_latents, noise, sigma)
# if pure noise then scale the initial latents by the Scheduler's init sigma
latents = latents * (sigma.item()**2 + 1) ** 0.5 if is_strength_max else latents
#latents = latents * sigma.item() if is_strength_max else latents #Nearly
else:
noise = latents.to(device)
latents = noise * (sigma.item()**2 + 1) ** 0.5
#latents = noise * sigma.item() #Nearly
outputs = (latents,)
if return_noise:
outputs += (noise,)
if return_image_latents:
outputs += (image_latents,)
return outputs
@torch.no_grad()
def inpaiting(
self,
prompt: Union[str, List[str]],
height: int = 512,
width: int = 512,
num_inference_steps: int = 50,
guidance_scale: float = 7.5,
negative_prompt: Optional[Union[str, List[str]]] = None,
eta: float = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.Tensor] = None,
output_type: Optional[str] = "pil",
callback_steps: Optional[int] = 1,
upscale=False,
upscale_x: float = 2.0,
upscale_method: str = "bicubic",
upscale_antialias: bool = False,
upscale_denoising_strength: int = 0.7,
region_map_state=None,
sampler_name="",
sampler_opt={},
start_time=-1,
timeout=180,
latent_processing = 0,
weight_func = lambda w, sigma, qk: w * sigma * qk.std(),
seed = 0,
sampler_name_hires= "",
sampler_opt_hires= {},
latent_upscale_processing = False,
ip_adapter_image = None,
control_img = None,
controlnet_conditioning_scale = None,
control_guidance_start = None,
control_guidance_end = None,
image_t2i_adapter : Optional[PipelineImageInput] = None,
adapter_conditioning_scale: Union[float, List[float]] = 1.0,
adapter_conditioning_factor: float = 1.0,
guidance_rescale: float = 0.0,
cross_attention_kwargs = None,
clip_skip = None,
long_encode = 0,
num_images_per_prompt = 1,
image: Union[torch.Tensor, PIL.Image.Image] = None,
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
masked_image_latents: torch.Tensor = None,
padding_mask_crop: Optional[int] = None,
strength: float = 1.0,
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
):
height, width = self._default_height_width(height, width, None)
if isinstance(sampler_name, str):
sampler = self.get_scheduler(sampler_name)
else:
sampler = sampler_name
# 1. Check inputs. Raise error if not correct
if image_t2i_adapter is not None:
height, width = default_height_width(self,height, width, image_t2i_adapter)
#print(default_height_width(self,height, width, image_t2i_adapter))
self.check_inputs(prompt, height, width, callback_steps)
# 2. Define call parameters
batch_size = 1 if isinstance(prompt, str) else len(prompt)
device = self._execution_device
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
'''do_classifier_free_guidance = True
if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")'''
lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
self._do_classifier_free_guidance = False if guidance_scale <= 1.0 else True
'''if guidance_scale <= 1.0:
raise ValueError("has to use guidance_scale")'''
# 3. Encode input prompt
text_embeddings, negative_prompt_embeds, text_input_ids = encode_prompt_function(
self,
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
lora_scale = lora_scale,
clip_skip = clip_skip,
long_encode = long_encode,
)
if self.do_classifier_free_guidance:
text_embeddings = torch.cat([negative_prompt_embeds, text_embeddings])
text_embeddings = text_embeddings.to(self.unet.dtype)
# 4. Prepare timesteps
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
t_start = max(num_inference_steps - init_timestep, 0)
sigmas = self.get_sigmas(num_inference_steps, sampler_opt).to(
text_embeddings.device, dtype=text_embeddings.dtype
)
sigmas = sigmas[t_start:] if strength >= 0 and strength < 1.0 else sigmas
is_strength_max = strength == 1.0
'''if latents is None:
noise_inpaiting = randn_tensor((batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8), generator=generator, device=device, dtype=text_embeddings.dtype)
else:
noise_inpaiting = latents.to(device)'''
# 5. Prepare mask, image,
if padding_mask_crop is not None:
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
resize_mode = "fill"
else:
crops_coords = None
resize_mode = "default"
original_image = image
init_image = self.image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
)
init_image = init_image.to(dtype=torch.float32)
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_unet = self.unet.config.in_channels
return_image_latents = num_channels_unet == 4
image_latents = None
noise_inpaiting = None
'''latents = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_unet,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
)'''
#latents = latents * sigmas[0]
latents_outputs = self.prepare_latents_inpating(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
text_embeddings.dtype,
device,
generator,
latents,
image=init_image,
sigma=sigmas[0],
is_strength_max=is_strength_max,
return_noise=True,
return_image_latents=return_image_latents,
)
if return_image_latents:
latents, noise_inpaiting, image_latents = latents_outputs
else:
latents, noise_inpaiting = latents_outputs
# 7. Prepare mask latent variables
mask_condition = self.mask_processor.preprocess(
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
if masked_image_latents is None:
masked_image = init_image * (mask_condition < 0.5)
else:
masked_image = masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask_condition,
masked_image,
batch_size * num_images_per_prompt,
height,
width,
text_embeddings.dtype,
device,
generator,
self.do_classifier_free_guidance,
)
# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
elif num_channels_unet != 4:
raise ValueError(
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
)
steps_denoising = len(sigmas)
self.k_diffusion_model.sigmas = self.k_diffusion_model.sigmas.to(latents.device)
self.k_diffusion_model.log_sigmas = self.k_diffusion_model.log_sigmas.to(
latents.device
)
region_state = encode_region_map(
self,
region_map_state,
width = width,
height = height,
num_images_per_prompt = num_images_per_prompt,
text_ids=text_input_ids,
)
if cross_attention_kwargs is None:
cross_attention_kwargs ={}
controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy() if isinstance(controlnet_conditioning_scale, list) else controlnet_conditioning_scale
control_guidance_start_copy = control_guidance_start.copy() if isinstance(control_guidance_start, list) else control_guidance_start
control_guidance_end_copy = control_guidance_end.copy() if isinstance(control_guidance_end, list) else control_guidance_end
guess_mode = False
if self.controlnet is not None:
img_control,controlnet_keep,guess_mode,controlnet_conditioning_scale = self.preprocess_controlnet(controlnet_conditioning_scale,control_guidance_start,control_guidance_end,control_img,width,height,num_inference_steps,batch_size,num_images_per_prompt)
#print(len(controlnet_keep))
#controlnet_conditioning_scale_copy = controlnet_conditioning_scale.copy()
#sp_control = 1
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 6.1 Add image embeds for IP-Adapter
added_cond_kwargs = (
{"image_embeds": image_embeds}
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
else None
)
#if controlnet_img is not None:
#controlnet_img_processing = controlnet_img.convert("RGB")
#transform = transforms.Compose([transforms.PILToTensor()])
#controlnet_img_processing = transform(controlnet_img)
#controlnet_img_processing=controlnet_img_processing.to(device=device, dtype=self.cnet.dtype)
if latent_processing == 1:
latents_process = [self.latent_to_image(latents,output_type)]
#sp_find_new = None
lst_latent_sigma = []
step_control = -1
adapter_state = None
adapter_sp_count = []
flag_add_noise_inpaiting = 0
if image_t2i_adapter is not None:
adapter_state = preprocessing_t2i_adapter(self,image_t2i_adapter,width,height,adapter_conditioning_scale,1)
def model_fn(x, sigma):
nonlocal step_control,lst_latent_sigma,adapter_sp_count,flag_add_noise_inpaiting
if start_time > 0 and timeout > 0:
assert (time.time() - start_time) < timeout, "inference process timed out"
if num_channels_unet == 4 and flag_add_noise_inpaiting:
init_latents_proper = image_latents
if self.do_classifier_free_guidance:
init_mask, _ = mask.chunk(2)
else:
init_mask = mask
if sigma.item() > sigmas[-1].item():
#indices = torch.where(sigmas == sigma.item())[0]
#sigma_next = sigmas[indices+1]
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma.item())
init_latents_proper = alpha_t * init_latents_proper + sigma_t * noise_inpaiting
rate_latent_timestep_sigma = (sigma**2 + 1) ** 0.5
x = ((1 - init_mask) * init_latents_proper + init_mask * x/ rate_latent_timestep_sigma ) * rate_latent_timestep_sigma
non_inpainting_latent_model_input = (
torch.cat([x] * 2) if self.do_classifier_free_guidance else x
)
inpainting_latent_model_input = torch.cat(
[non_inpainting_latent_model_input,mask, masked_image_latents], dim=1
) if num_channels_unet == 9 else non_inpainting_latent_model_input
region_prompt = {
"region_state": region_state,
"sigma": sigma[0],
"weight_func": weight_func,
}
cross_attention_kwargs["region_prompt"] = region_prompt
#print(self.k_diffusion_model.sigma_to_t(sigma[0]))
if non_inpainting_latent_model_input.dtype != text_embeddings.dtype:
non_inpainting_latent_model_input = non_inpainting_latent_model_input.to(text_embeddings.dtype)
if inpainting_latent_model_input.dtype != text_embeddings.dtype:
inpainting_latent_model_input = inpainting_latent_model_input.to(text_embeddings.dtype)
ukwargs = {}
down_intrablock_additional_residuals = None
if adapter_state is not None:
if len(adapter_sp_count) < int( steps_denoising* adapter_conditioning_factor):
down_intrablock_additional_residuals = [state.clone() for state in adapter_state]
else:
down_intrablock_additional_residuals = None
sigma_string_t2i = str(sigma.item())
if sigma_string_t2i not in adapter_sp_count:
adapter_sp_count.append(sigma_string_t2i)
if self.controlnet is not None :
sigma_string = str(sigma.item())
if sigma_string not in lst_latent_sigma:
#sigmas_sp = sigma.detach().clone()
step_control+=1
lst_latent_sigma.append(sigma_string)
if isinstance(controlnet_keep[step_control], list):
cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[step_control])]
else:
controlnet_cond_scale = controlnet_conditioning_scale
if isinstance(controlnet_cond_scale, list):
controlnet_cond_scale = controlnet_cond_scale[0]
cond_scale = controlnet_cond_scale * controlnet_keep[step_control]
down_block_res_samples = None
mid_block_res_sample = None
down_block_res_samples, mid_block_res_sample = self.controlnet(
non_inpainting_latent_model_input / ((sigma**2 + 1) ** 0.5),
self.k_diffusion_model.sigma_to_t(sigma),
encoder_hidden_states=text_embeddings,
controlnet_cond=img_control,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
if guess_mode and self.do_classifier_free_guidance:
# Infered ControlNet only for the conditional batch.
# To apply the output of ControlNet to both the unconditional and conditional batches,
# add 0 to the unconditional batch to keep it unchanged.
down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
ukwargs ={
"down_block_additional_residuals": down_block_res_samples,
"mid_block_additional_residual":mid_block_res_sample,
}
noise_pred = self.k_diffusion_model(
inpainting_latent_model_input, sigma, cond=text_embeddings,cross_attention_kwargs=cross_attention_kwargs,down_intrablock_additional_residuals=down_intrablock_additional_residuals,added_cond_kwargs=added_cond_kwargs, **ukwargs
)
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
if guidance_rescale > 0.0:
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
if latent_processing == 1:
latents_process.append(self.latent_to_image(noise_pred,output_type))
flag_add_noise_inpaiting = 1
return noise_pred
extra_args = self.get_sampler_extra_args_t2i(
sigmas, eta, num_inference_steps,sampler_opt,latents,seed, sampler
)
latents = sampler(model_fn, latents, **extra_args)
#latents = latents_process[0]
#print(len(latents_process))
self.maybe_free_model_hooks()
torch.cuda.empty_cache()
gc.collect()
if upscale:
vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
target_height = int(height * upscale_x // vae_scale_factor )* 8
target_width = int(width * upscale_x // vae_scale_factor)*8
latents = torch.nn.functional.interpolate(
latents,
size=(
int(target_height // vae_scale_factor),
int(target_width // vae_scale_factor),
),
mode=upscale_method,
antialias=upscale_antialias,
)
#if controlnet_img is not None:
#controlnet_img = cv2.resize(controlnet_img,(latents.size(0), latents.size(1)))
#controlnet_img=controlnet_img.resize((latents.size(0), latents.size(1)), Image.LANCZOS)
latent_reisze= self.img2img(
prompt=prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator,
latents=latents,
strength=upscale_denoising_strength,
sampler_name=sampler_name_hires,
sampler_opt=sampler_opt_hires,
region_map_state = region_map_state,
latent_processing = latent_upscale_processing,
width = int(target_width),
height = int(target_height),
seed = seed,
ip_adapter_image = ip_adapter_image,
control_img = control_img,
controlnet_conditioning_scale = controlnet_conditioning_scale_copy,
control_guidance_start = control_guidance_start_copy,
control_guidance_end = control_guidance_end_copy,
image_t2i_adapter= image_t2i_adapter,
adapter_conditioning_scale = adapter_conditioning_scale,
adapter_conditioning_factor = adapter_conditioning_factor,
guidance_rescale = guidance_rescale,
cross_attention_kwargs = cross_attention_kwargs,
clip_skip = clip_skip,
long_encode = long_encode,
num_images_per_prompt = num_images_per_prompt,
)
'''if latent_processing == 1:
latents = latents_process.copy()
images = []
for i in latents:
images.append(self.decode_latents(i))
image = []
if output_type == "pil":
for i in images:
image.append(self.numpy_to_pil(i))
image[-1] = latent_reisze
return image'''
if latent_processing == 1:
latents_process= latents_process+latent_reisze
return latents_process
torch.cuda.empty_cache()
gc.collect()
return latent_reisze
# 8. Post-processing
'''if latent_processing == 1:
latents = latents_process.copy()
images = []
for i in latents:
images.append(self.decode_latents(i))
image = []
# 10. Convert to PIL
if output_type == "pil":
for i in images:
image.append(self.numpy_to_pil(i))
else:
image = self.decode_latents(latents)
# 10. Convert to PIL
if output_type == "pil":
image = self.numpy_to_pil(image)'''
if latent_processing == 1:
return latents_process
return [self.latent_to_image(latents,output_type)]
|