Spaces:
Running
Running
File size: 21,091 Bytes
85e3d20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 |
import glob
import os
import json
import glob
import tiktoken
import pandas as pd
import copy
import numpy as np
import matplotlib.pyplot as plt
import re
import time
def estimate_tokens(path):
enc = tiktoken.encoding_for_model("gpt-4")
prompt_tokens = 0
completed_tokens = 0
num_steps = 0
step_logs = path.replace("trace.json", "../agent_log/*.log")
for file in glob.glob(step_logs):
with open(file, "r") as f:
content = f.read()
if "langchain" not in file:
prompts = re.findall(r"===================prompt=====================" + r"(.*?)" + r"===================.*?response.*?=====================", content, re.DOTALL)
prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
completed = re.findall(r"===================.*?response.*?=====================" + r"(.*?)" + r"===================tokens=====================", content, re.DOTALL)
completed_tokens += sum([len(enc.encode(p)) for p in completed])
else:
prompts = re.findall(r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
completed = re.findall(r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
completed_tokens += sum([len(enc.encode(p)) for p in completed])
num_steps = len(json.load(open(path, "r"))["steps"])
try:
total_time = float(open(path.replace("trace.json", "overall_time.txt"), "r").read())
except:
total_time = 0
tool_step_logs = path.replace("trace.json", "tool_logs/*.log")
tool_prompt_tokens = 0
tool_completed_tokens = 0
for file in glob.glob(tool_step_logs):
with open(file, "r") as f:
content = f.read()
if "langchain" not in file:
prompts = re.findall(r"===================prompt=====================" + r"(.*?)" + r"===================.*?response.*?=====================", content, re.DOTALL)
tool_prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
completed = re.findall(r"===================.*?response.*?=====================" + r"(.*?)" + r"===================tokens=====================", content, re.DOTALL)
tool_completed_tokens += sum([len(enc.encode(p)) for p in completed])
else:
prompts = re.findall(r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
tool_prompt_tokens += sum([len(enc.encode(p)) for p in prompts])
completed = re.findall(r"\x1B\[0m\n\n\x1B\[1m> Finished chain.\x1B\[0m\n\x1B\[32;1m\x1B\[1;3m" + r"(.*?)" + r"Prompt after formatting:\n\x1B\[32;1m\x1B\[1;3m", content, re.DOTALL)
tool_completed_tokens += sum([len(enc.encode(p)) for p in completed])
return prompt_tokens, completed_tokens, tool_prompt_tokens, tool_completed_tokens, num_steps, total_time
def oom_error(path):
log = path.replace("trace.json", "../log")
main_log = path.replace("trace.json", "../agent_log/main_log")
message = "CUDA out of memory"
return (message in open(log, "r").read()) or (message in open(main_log, "r").read())
def mkl_error(path):
log = path.replace("trace.json", "../log")
main_log = path.replace("trace.json", "../agent_log/main_log")
messages = ["rror: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp-a34b3233.so.1 library.", "OpenBLAS blas_thread_init:"]
return any([m in open(log, "r").read() for m in messages]) or any([m in open(main_log, "r").read() for m in messages])
def quota_error(path):
log = path.replace("trace.json", "error.txt")
if os.path.exists(log):
message = "RemoteServiceError: EXCEPTION: total quota"
return message in open(log, "r").read()
return False
def connection_error(path):
log = path.replace("trace.json", "../log")
main_log = path.replace("trace.json", "../agent_log/main_log")
bad = ["You exceeded your current quota, please check your plan and billing details.", "Error: 'text-similarity-ada-001'", "Error: 'text-embedding-ada-001'"]
return ("Connection aborted" in open(log, "r").read()) or (any([b in open(main_log, "r").read() for b in bad]))
def langchain_error(path):
if os.path.exists(os.path.join(path.replace("trace.json", ""), "error.txt")):
return "langchain.schema.OutputParserException" in open(os.path.join(path.replace("trace.json", ""), "error.txt"), "r").read()
return False
def error(path):
return (os.path.exists(os.path.join(path.replace("trace.json", ""), "error.txt")) and not langchain_error(path)) or not os.path.exists(os.path.join(path.replace("trace.json", ""), "overall_time.txt"))
def json_error(path):
main_log = path.replace("trace.json", "../agent_log/main_log")
return open(main_log, "r").read().count("JSONDecodeError") > 2
def langchain_final(path):
return "Final Answer" in open(path.replace("trace.json", "../agent_log/main_log"), "r").read()
def autogpt_final(path):
return "Goal achieved" in open(path.replace("trace.json", "../agent_log/main_log"), "r").read()
def long_prompt_error(path):
main_log = path.replace("trace.json", "../agent_log/main_log")
return "EnvError: too long input for the tool" in open(main_log, "r").read()
def get_all_runs_with_log():
#TODO: fix paths to where your trace.json are
all_runs.extend(glob.glob("/lfs/local/0/qhwang/nlp_logs/final_exp_logs*/*/*/*/env_log/trace.json"))
df = pd.DataFrame()
for r in all_runs:
exp, task, run = r.split("/")[-5:-2]
if task in os.listdir("../research_assistant_final/MLAgentBench/benchmarks"):
new_row={"task": task, "exp": exp, "run": run, "path": r}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
df["error"] = df["path"].apply(error)
df["json_error"] = df["path"].apply(json_error)
df["long_prompt_error"] = df["path"].apply(long_prompt_error)
df["oom_error"] = df["path"].apply(oom_error)
df["connection_error"] = df["path"].apply(connection_error)
df['mkl_error'] = df["path"].apply(mkl_error)
df['quota_error'] = df["path"].apply(quota_error)
df["langchain_error"] = df["path"].apply(langchain_error)
df_no_error = df[(((~df["error"]) & (~df["connection_error"])) | df["exp"].isin(["no_retrieval_gpt4", "full_gpt4_long"]) | (df["exp"].isin(["langchain", "langchain_long"]) & df["langchain_error"]) )& (~df["oom_error"]) & (~df["mkl_error"])]
return df , df_no_error
lower_the_better_tasks = [ "parkinsons-disease", "feedback", "BabyLM", "llama-inference", "house-price", "vectorization"]
# TODO: add propoer label mapping and task name mapping for pretty printing in the figure
print_labels = {
"no_retrieval_gpt4" : "GPT-4",
"no_retrieval" : "Claude v1.0",
"autogpt" : "AutoGPT",
"react" : "React",
"langchain" : "LangChain (React)",
"sanity_check" : "Baseline"
}
print_task_labels = {
"cifar10_training" : "cifar10",
"imdb" : "imdb",
"ogbn-arxiv" : "ogbn-arxiv",
"home-data-for-ml-course" : "house-price",
"kaggle_training_reg" : "house-price",
"kaggle_training_class" : "spaceship-titanic",
"amp-parkinsons-disease-progression-prediction" : "parkinsons-disease",
"fathomnet-out-of-sample-detection" : "fathomnet",
"feedback-prize-english-language-learning" : "feedback",
"google-research-identify-contrails-reduce-global-warming" : "identify-contrails",
"speed-up" : "llama-inference",
"vectorisation" : "vectorization",
"CLRS" : "CLRS",
"babylm" : "BabyLM"
}
def get_improvement(df, baseline, thresh = None, prefix=""):
if prefix:
df[f"{prefix}increase"] = df[[f"{prefix}score", "task"]].apply(lambda x: (x[f"{prefix}score"] - baseline[(baseline["task"] == x["task"])]["final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x[f"{prefix}score"] is not None else None, axis=1)
df[f"{prefix}decrease"] = df[[f"{prefix}score", "task"]].apply(lambda x: (x[f"{prefix}score"] - baseline[(baseline["task"] == x["task"])][f"final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x[f"{prefix}score"] is not None else None, axis=1)
if thresh:
return df[["task", f"{prefix}increase", f"{prefix}decrease"]].apply(lambda x: (x[f"{prefix}increase"] > thresh if x["task"] not in lower_the_better_tasks else x[f"{prefix}decrease"] < - thresh) if x[f"{prefix}increase"] is not None else False, axis=1)
else:
return df[["task", f"{prefix}increase", f"{prefix}decrease"]].apply(lambda x: (x[f"{prefix}increase"] if x["task"] not in lower_the_better_tasks else - x[f"{prefix}decrease"]) if x[f"{prefix}increase"] is not None else None, axis=1)
# performance
def get_all_runs_eval(print_labels = print_labels, print_task_labels = print_task_labels):
# TODO: collect all evaluation jsons into all_results
all_results = {}
for f in glob.glob("/lfs/local/0/qhwang/nlp_logs/*.json"):
all_results.update(json.load(open(f, "r")))
df = pd.DataFrame()
for n, results in all_results.items():
if n.endswith(".json"):
n=n.split("/env_log")[0]
results = {n: results}
exp, task, run = n.split("/")[-3:]
exp = exp.strip()
if exp == "react":
continue
task = task.strip()
run = run.strip()
for source_file, r in results.items():
r_ = copy.deepcopy(r)
if len(r["score"]) < len(r["score_steps"])+1:
r_["score"].append(r["final_score"])
r_["score_steps"].append(len(json.load(open(r_["path"], "r"))["steps"]))
r_["score"] = np.array(r_["score"])
r_["score_steps"] = np.array(r_["score_steps"])
if exp == "no_retrieval":
r_["score"] = r_["score"][r_["score_steps"] < 16]
r_["score_steps"] = r_["score_steps"][r_["score_steps"] < 16]
if exp == "langchain":
r_["submitted_final_answer"] = langchain_final(r_["path"])
if exp == "autogpt":
r_["submitted_final_answer"] = autogpt_final(r_["path"])
new_row={"task": task, "exp": exp, "run": run, **r_}
df = pd.concat([df, pd.DataFrame([new_row])], ignore_index=True)
df["connection_error"] = df["path"].apply(connection_error)
df["has_error"] = df["path"].apply(error)
df["oom_error"] = df["path"].apply(oom_error)
df["mkl_error"] = df["path"].apply(mkl_error)
df["langchain_error"] = df["path"].apply(langchain_error)
print(len(df[(df["error"] != "") | (df["connection_error"] == True)]))
df = df[(((~df["has_error"]) & (df["connection_error"] == False)) | df["exp"].isin(["no_retrieval_gpt4", "full_gpt4_long"])| (df["exp"].isin(["langchain", "langchain_long"]) & df["langchain_error"]) ) & (~df["oom_error"]) & (~df["mkl_error"])]
df["exp"] = df["exp"].apply(lambda x: x if not x.endswith("_long") else x[:-5])
df = df[df["exp"].isin(list(print_labels.keys()))]
df["exp"] = df["exp"].apply(lambda x: print_labels[x])
df["task"] = df["task"].apply(lambda x: print_task_labels.get(x, x))
df["final_submitted_score"] = df[["final_score", "submitted_final_answer"]].apply(lambda x: x["final_score"] if x["final_score"] > 0 and x["submitted_final_answer"] else None, axis=1)
df["final_score"] = df["final_score"].apply(lambda x: x if x > 0 else None)
baseline = df[df["exp"] == "Baseline"][[ "task", "exp", "final_score"]].groupby(["task", "exp"]).mean().reset_index()
# special baseline numbers
try:
baseline.at[baseline[baseline["task"] == "imdb"].index.values[0], "final_score"] = 0.5
baseline.at[baseline[baseline["task"] == "fathomnet"].index.values[0], "final_score"] = 1e-10
except:
baseline = pd.concat(
[
baseline,
pd.DataFrame(
[{"task": "imdb", "exp": "Baseline", "final_score": 0.5}]
),
],
ignore_index=True,
)
baseline = pd.concat(
[
baseline,
pd.DataFrame(
[{"task": "fathomnet", "exp": "Baseline", "final_score": 1e-10}]
),
],
ignore_index=True,
)
baseline = pd.concat([baseline, pd.DataFrame([{"task" : "spaceship-titanic", "exp" :"Baseline", "final_score": 0.5}])], ignore_index=True)
baseline = pd.concat([baseline, pd.DataFrame([{"task" : "house-price", "exp" :"Baseline", "final_score": 1e10}])], ignore_index=True)
baseline = pd.concat([baseline, pd.DataFrame([{"task" : "ogbn-arxiv", "exp" :"Baseline", "final_score": 0.3134}])], ignore_index=True)
baseline = pd.concat([baseline, pd.DataFrame([{"task" : "vectorization", "exp" :"Baseline", "final_score": 6.1742}])], ignore_index=True)
return df, baseline
def get_all_runs_results(df = None, baseline = None, print_labels = print_labels, print_task_labels = print_task_labels):
if df is None or baseline is None:
df, baseline = get_all_runs_eval(print_labels = print_labels, print_task_labels = print_task_labels)
df[df["final_score"] > -1]["task"].unique()
df = df[df["task"].isin(baseline["task"].unique())]
df["max_score"] = df["score"].apply(lambda x: max(list(filter(lambda a: a > 0, x))) if len(list(filter(lambda a: a > 0, x))) > 0 else None)
df["min_score"] = df["score"].apply(lambda x: min(list(filter(lambda a: a > 0, x))) if len(list(filter(lambda a: a > 0, x))) > 0 else None)
df["increase"] = df[["max_score", "task"]].apply(lambda x: (x["max_score"] - baseline[(baseline["task"] == x["task"])]["final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x["max_score"] is not None else None, axis=1)
df["decrease"] = df[["min_score", "task"]].apply(lambda x: (x["min_score"] - baseline[(baseline["task"] == x["task"])]["final_score"].values[0])/baseline[(baseline["task"] == x["task"])]["final_score"].values[0] if x["min_score"] is not None else None, axis=1)
print(time.time())
df["improve"] = get_improvement(df, baseline)
df["improve_5"] = get_improvement(df, baseline, 0.05)
df["improve_10"] = get_improvement(df, baseline, 0.1)
df["improve_15"] = get_improvement(df, baseline, 0.15)
df["improve_20"] = get_improvement(df, baseline, 0.2)
df["improve_30"] = get_improvement(df, baseline, 0.3)
for prefix in ["final_"]:
df[f"{prefix}improve"] = get_improvement(df, baseline, None, prefix)
df[f"{prefix}improve_5"] = get_improvement(df, baseline, 0.05, prefix)
df[f"{prefix}improve_10"] = get_improvement(df, baseline, 0.1, prefix)
df[f"{prefix}improve_15"] = get_improvement(df, baseline, 0.15, prefix)
df[f"{prefix}improve_20"] = get_improvement(df, baseline, 0.2, prefix)
df[f"{prefix}improve_30"] = get_improvement(df, baseline, 0.3, prefix)
print(time.time())
# uncomment these to count tokens
# df[["prompt_tokens", "completed_tokens", "tool_prompt_tokens", "tool_completed_tokens", "num_steps", "total_time"]] = df.apply((lambda row: estimate_tokens(row["path"])), axis=1, result_type="expand")
# df['total_tokens'] = df["prompt_tokens"] + df["completed_tokens"] + df["tool_prompt_tokens"] + df["tool_completed_tokens"]
print(time.time())
return df
import seaborn as sns
from pandas.api.types import CategoricalDtype
colors = {
"GPT-4" : "#d62728",
"Claude v1.0" : "#2ca02c",
"AutoGPT" : "#9467bd",
"React" : "#8c564b",
"LangChain (React)" : "#e377c2",
"Baseline" : "#7f7f7f"
}
def get_tradeoff_plot(df):
def sample_and_mean(group):
if "GPT-4" in group["exp"].values[0]:
sample = group.sample(n=min(len(group), 8), random_state=1)
else:
sample = group.sample(n=min(len(group), 25), random_state=1)
return sample.groupby(["task", "exp"]).mean().reset_index().drop(columns=["task", "exp"])
grouped_df = df[["task", "exp", "final_improve_10", "total_tokens"]].groupby(["task", "exp"]).apply(sample_and_mean).round(4).reset_index()
x = grouped_df[["total_tokens","exp"]].groupby([ "exp"]).mean().values.flatten().tolist()
y = grouped_df[["final_improve_10","exp"]].groupby([ "exp"]).mean().values.flatten().tolist()
labels = ["AutoGPT", "Baseline", "Claude v1.0", "GPT-4", "LangChain (React)"]
plt.figure()
plt.scatter(x,y)
for i in range(len(x)):
plt.annotate(labels[i], # this is the text
(x[i], y[i]), # these are the coordinates to position the label
textcoords="offset points", # how to position the text
xytext=(0,10), # distance from text to points (x,y)
ha='center') # horizontal alignment can be left, right or center
plt.xlim((-30000, 200000))
plt.ylim((0, 0.3))
# plt.show()
plt.xlabel("Average Nsumber of Tokens Spent")
plt.ylabel("Average Success Rate")
plt.savefig("plots/tradeoff.pdf")
def get_plot(df, column_name = "improve_5", titile = "Improvement of 5%", save_name = "improve_5", plot_tokens = False, plot_time = False):
def sample_and_mean(group):
if "GPT-4" in group["exp"].values[0]:
sample = group.sample(n=min(len(group), 8), random_state=1)
else:
sample = group.sample(n=min(len(group), 25), random_state=1)
return sample.groupby(["task", "exp"]).mean().reset_index().drop(columns=["task", "exp"])
grouped_df = df[["task", "exp", column_name]].groupby(["task", "exp"]).apply(sample_and_mean).round(4).reset_index()
grouped_df.fillna(0, inplace=True)
if plot_time:
grouped_df[column_name] = grouped_df[column_name] / 60
elif not plot_tokens:
grouped_df[column_name] = grouped_df[column_name] * 100
# Define the order
task_order = list(print_task_labels.values())
task_order.remove("house-price")
exp_order = ["GPT-4", "Claude v1.0", "AutoGPT", "LangChain (React)", "Baseline"]
cat_type = CategoricalDtype(categories=task_order, ordered=True)
grouped_df['task'] = grouped_df['task'].astype(cat_type)
cat_type = CategoricalDtype(categories=exp_order, ordered=True)
grouped_df['exp'] = grouped_df['exp'].astype(cat_type)
plt.figure(figsize=(10,6))
palette = [colors[x] for x in exp_order]
barplot = sns.barplot(x='task', y=column_name, hue='exp', data=grouped_df, palette=palette, ci=95)
print(titile)
# Get the current x-tick labels
labels = [item.get_text() for item in barplot.get_xticklabels()]
# Modify the labels
new_labels = labels # [ l.split("_")[0].split("-")[0] for l in labels]
# Set the new labels
plt.xticks(range(len(labels)), new_labels, rotation=30)
plt.ylim(plt.ylim()[0], plt.ylim()[1] + (plt.ylim()[1]-plt.ylim()[0]) * 0.1)
leg = barplot.get_legend()
leg.set_title(None)
for t in leg.texts:
t.set_text(t.get_text().replace("Year=", ""))
plt.legend(loc='upper center', fancybox=True, shadow=True, ncol=4)
plt.xlabel("Task")
if plot_tokens:
plt.ylabel("Tokens")
elif plot_time:
plt.ylabel("Time (minutes)")
else:
plt.ylabel("Percentage")
plt.savefig(f"plots/{save_name}.pdf", bbox_inches='tight')
plt.show()
if __name__ == "__main__":
df = get_all_runs_results()
get_plot(df, "improve_5", "Percentage of runs that improve objective by over 5% at any point", "improve_5")
get_plot(df, "improve_10", "Percentage of runs that improve objective by over 10% at any point", "improve_10")
get_plot(df, "final_improve_5", "Percentage of runs that improves objective by over 5% at the end", "final_improve_5")
get_plot(df, "final_improve_10", "Percentage of runs that improves objective by over 10% at the end", "final_improve_10")
get_plot(df, "final_improve_30", "Percentage of runs that improves objective by over 30% at the end", "final_improve_30")
get_plot(df, "final_improve", "Average improvement in objective among runs that made a submission at the end.", "final_improve")
get_plot(df[df["submitted_final_answer"]], "final_improve", "Average improvement in objective among runs that made a final submission.", "final_improve_submitted")
get_plot(df, "total_tokens", "", "total_tokens", plot_tokens= True)
get_plot(df, "total_time", "", "total_time",plot_time=True)
|