Spaces:
Runtime error
Runtime error
DRBAPH
commited on
Upload gradio_app.py
Browse files- gradio_app.py +32 -16
gradio_app.py
CHANGED
@@ -10,7 +10,7 @@ from datetime import datetime
|
|
10 |
import gradio as gr
|
11 |
|
12 |
# Define the function to generate audio based on a prompt
|
13 |
-
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type):
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
# Download model
|
@@ -19,6 +19,16 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
|
19 |
sample_size = model_config["sample_size"]
|
20 |
|
21 |
model = model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Set up text and timing conditioning
|
24 |
conditioning = [{
|
@@ -41,11 +51,19 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
|
41 |
seed=seed
|
42 |
)
|
43 |
|
|
|
|
|
|
|
44 |
# Rearrange audio batch to a single sequence
|
45 |
output = rearrange(output, "b d n -> d (b n)")
|
46 |
|
47 |
-
# Peak normalize, clip, convert to int16
|
48 |
-
output = output.
|
|
|
|
|
|
|
|
|
|
|
49 |
torchaudio.save("temp_output.wav", output, sample_rate)
|
50 |
|
51 |
# Convert to MP3 format using pydub
|
@@ -74,7 +92,7 @@ def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_ti
|
|
74 |
|
75 |
return full_path
|
76 |
|
77 |
-
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed):
|
78 |
try:
|
79 |
print("Generating audio with parameters:")
|
80 |
print("Prompt:", prompt)
|
@@ -85,8 +103,9 @@ def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max
|
|
85 |
print("Sigma Max:", sigma_max)
|
86 |
print("Generation Time:", generation_time)
|
87 |
print("Seed:", seed)
|
|
|
88 |
|
89 |
-
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type)
|
90 |
return gr.Audio(filename), f"Generated: {filename}"
|
91 |
except Exception as e:
|
92 |
return str(e)
|
@@ -106,16 +125,13 @@ sampler_dropdown = gr.Dropdown(
|
|
106 |
],
|
107 |
value="dpmpp-3m-sde"
|
108 |
)
|
109 |
-
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1)
|
110 |
-
|
111 |
-
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1)
|
112 |
-
cfg_scale_slider.value = 7 # Set the default value here
|
113 |
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
114 |
-
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=1, value=500)
|
115 |
-
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1)
|
116 |
-
|
117 |
-
|
118 |
-
seed_slider.value = 77212 # Set the default value here
|
119 |
|
120 |
output_textbox = gr.Textbox(label="Output")
|
121 |
|
@@ -124,8 +140,8 @@ description = "[Github Repository](https://github.com/Saganaki22/StableAudioWebU
|
|
124 |
|
125 |
gr.Interface(
|
126 |
audio_generator,
|
127 |
-
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider],
|
128 |
[gr.Audio(), output_textbox],
|
129 |
title=title,
|
130 |
description=description
|
131 |
-
).launch()
|
|
|
10 |
import gradio as gr
|
11 |
|
12 |
# Define the function to generate audio based on a prompt
|
13 |
+
def generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half):
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
# Download model
|
|
|
19 |
sample_size = model_config["sample_size"]
|
20 |
|
21 |
model = model.to(device)
|
22 |
+
|
23 |
+
# Print model data type before conversion
|
24 |
+
print("Model data type before conversion:", next(model.parameters()).dtype)
|
25 |
+
|
26 |
+
# Convert model to float16 if model_half is True
|
27 |
+
if model_half:
|
28 |
+
model = model.to(torch.float16)
|
29 |
+
|
30 |
+
# Print model data type after conversion
|
31 |
+
print("Model data type after conversion:", next(model.parameters()).dtype)
|
32 |
|
33 |
# Set up text and timing conditioning
|
34 |
conditioning = [{
|
|
|
51 |
seed=seed
|
52 |
)
|
53 |
|
54 |
+
# Print output data type
|
55 |
+
print("Output data type:", output.dtype)
|
56 |
+
|
57 |
# Rearrange audio batch to a single sequence
|
58 |
output = rearrange(output, "b d n -> d (b n)")
|
59 |
|
60 |
+
# Peak normalize, clip, and convert to int16 directly if model_half is used
|
61 |
+
output = output.div(torch.max(torch.abs(output))).clamp(-1, 1).mul(32767)
|
62 |
+
if model_half:
|
63 |
+
output = output.to(torch.int16).cpu()
|
64 |
+
else:
|
65 |
+
output = output.to(torch.float32).to(torch.int16).cpu()
|
66 |
+
|
67 |
torchaudio.save("temp_output.wav", output, sample_rate)
|
68 |
|
69 |
# Convert to MP3 format using pydub
|
|
|
92 |
|
93 |
return full_path
|
94 |
|
95 |
+
def audio_generator(prompt, sampler_type, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, model_half):
|
96 |
try:
|
97 |
print("Generating audio with parameters:")
|
98 |
print("Prompt:", prompt)
|
|
|
103 |
print("Sigma Max:", sigma_max)
|
104 |
print("Generation Time:", generation_time)
|
105 |
print("Seed:", seed)
|
106 |
+
print("Model Half Precision:", model_half)
|
107 |
|
108 |
+
filename = generate_audio(prompt, steps, cfg_scale, sigma_min, sigma_max, generation_time, seed, sampler_type, model_half)
|
109 |
return gr.Audio(filename), f"Generated: {filename}"
|
110 |
except Exception as e:
|
111 |
return str(e)
|
|
|
125 |
],
|
126 |
value="dpmpp-3m-sde"
|
127 |
)
|
128 |
+
steps_slider = gr.Slider(minimum=0, maximum=200, label="Steps", step=1, value=100)
|
129 |
+
cfg_scale_slider = gr.Slider(minimum=0, maximum=15, label="CFG Scale", step=0.1, value=7)
|
|
|
|
|
130 |
sigma_min_slider = gr.Slider(minimum=0, maximum=50, label="Sigma Min", step=0.1, value=0.3)
|
131 |
+
sigma_max_slider = gr.Slider(minimum=0, maximum=1000, label="Sigma Max", step=0.1, value=500)
|
132 |
+
generation_time_slider = gr.Slider(minimum=0, maximum=47, label="Generation Time (seconds)", step=1, value=47)
|
133 |
+
seed_slider = gr.Slider(minimum=-1, maximum=999999, label="Seed", step=1, value=123456)
|
134 |
+
model_half_checkbox = gr.Checkbox(label="Low VRAM (float16)", value=False)
|
|
|
135 |
|
136 |
output_textbox = gr.Textbox(label="Output")
|
137 |
|
|
|
140 |
|
141 |
gr.Interface(
|
142 |
audio_generator,
|
143 |
+
[prompt_textbox, sampler_dropdown, steps_slider, cfg_scale_slider, sigma_min_slider, sigma_max_slider, generation_time_slider, seed_slider, model_half_checkbox],
|
144 |
[gr.Audio(), output_textbox],
|
145 |
title=title,
|
146 |
description=description
|
147 |
+
).launch()
|