Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import json | |
import os | |
from pprint import pprint | |
import bitsandbytes as bnb | |
import torch | |
import torch.nn as nn | |
import transformers | |
import accelerate | |
from datasets import load_dataset, Dataset | |
from huggingface_hub import notebook_login | |
from peft import LoraConfig, PeftConfig, PeftModel, get_peft_model, prepare_model_for_kbit_training | |
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig | |
from huggingface_hub import login | |
import os | |
access_token = os.environ["HF_Token"] | |
login(token=access_token) | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.bfloat16 | |
) | |
print("claim") | |
PEFT_MODEL = "dpaul93/falcon-7b-qlora-chat-claim-finetune" #"/content/trained-model" | |
config = PeftConfig.from_pretrained(PEFT_MODEL) | |
config.base_model_name_or_path = "tiiuae/falcon-7b" | |
model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
quantization_config=bnb_config, | |
device_map="auto", | |
trust_remote_code=True | |
) | |
tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
tokenizer.pad_token = tokenizer.eos_token | |
model = PeftModel.from_pretrained(model, PEFT_MODEL) | |
def generate_test_prompt(text): | |
return f"""Given the following claim: | |
{text} | |
pick one of the following option | |
(a) true | |
(b) false | |
(c) mixture | |
(d) unknown | |
(e) not_applicable?""".strip() | |
def generate_and_tokenize_prompt(text): | |
prompt = generate_test_prompt(text) | |
device = "cuda" | |
encoding = tokenizer(prompt, return_tensors="pt").to(device) | |
with torch.inference_mode(): | |
outputs = model.generate( | |
input_ids = encoding.input_ids, | |
attention_mask = encoding.attention_mask, | |
generation_config = generation_config | |
) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True).split("Answer:")[1].split("\n")[0].split(".")[0] | |
def classifyUsingLLAMA(text): | |
return generate_and_tokenize_prompt(text) | |
iface = gr.Interface(fn=classifyUsingLLAMA, inputs="text", outputs="text") | |
iface.launch() | |