File size: 7,624 Bytes
ad68ae6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import json
import os
import time
import zipfile
from pathlib import Path

import numpy as np
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer

import modules.shared as shared

transformers.logging.set_verbosity_error()

local_rank = None

if shared.args.flexgen:
    from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
                                  Policy, str2bool)

if shared.args.deepspeed:
    import deepspeed
    from transformers.deepspeed import (HfDeepSpeedConfig,
                                        is_deepspeed_zero3_enabled)

    from modules.deepspeed_parameters import generate_ds_config

    # Distributed setup
    local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
    world_size = int(os.getenv("WORLD_SIZE", "1"))
    torch.cuda.set_device(local_rank)
    deepspeed.init_distributed()
    ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
    dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration


def load_model(model_name):
    print(f"Loading {model_name}...")
    t0 = time.time()

    shared.is_RWKV = model_name.lower().startswith('rwkv-')

    # Default settings
    if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
        if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
            model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
        else:
            model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()

    # FlexGen
    elif shared.args.flexgen:
        # Initialize environment
        env = ExecutionEnv.create(shared.args.disk_cache_dir)

        # Offloading policy
        policy = Policy(1, 1,
                        shared.args.percent[0], shared.args.percent[1],
                        shared.args.percent[2], shared.args.percent[3],
                        shared.args.percent[4], shared.args.percent[5],
                        overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
                        cpu_cache_compute=False, attn_sparsity=1.0,
                        compress_weight=shared.args.compress_weight,
                        comp_weight_config=CompressionConfig(
                            num_bits=4, group_size=64,
                            group_dim=0, symmetric=False),
                        compress_cache=False,
                        comp_cache_config=CompressionConfig(
                            num_bits=4, group_size=64,
                            group_dim=2, symmetric=False))

        model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)

    # DeepSpeed ZeRO-3
    elif shared.args.deepspeed:
        model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
        model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
        model.module.eval() # Inference
        print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")

    # RMKV model (not on HuggingFace)
    elif shared.is_RWKV:
        from modules.RWKV import RWKVModel, RWKVTokenizer

        model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
        tokenizer = RWKVTokenizer.from_pretrained(Path('models'))

        return model, tokenizer

    # Quantized model
    elif shared.args.gptq_bits > 0:
        from modules.GPTQ_loader import load_quantized

        model = load_quantized(model_name)

    # Custom
    else:
        command = "AutoModelForCausalLM.from_pretrained"
        params = ["low_cpu_mem_usage=True"]
        if not shared.args.cpu and not torch.cuda.is_available():
            print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
            shared.args.cpu = True

        if shared.args.cpu:
            params.append("low_cpu_mem_usage=True")
            params.append("torch_dtype=torch.float32")
        else:
            params.append("device_map='auto'")
            params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")

            if shared.args.gpu_memory:
                memory_map = shared.args.gpu_memory
                max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
                for i in range(1, len(memory_map)):
                    max_memory += (f", {i}: '{memory_map[i]}GiB'")
                max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
                params.append(max_memory)
            elif not shared.args.load_in_8bit:
                total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
                suggestion = round((total_mem-1000)/1000)*1000
                if total_mem-suggestion < 800:
                    suggestion -= 1000
                suggestion = int(round(suggestion/1000))
                print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
                params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
            if shared.args.disk:
                params.append(f"offload_folder='{shared.args.disk_cache_dir}'")

        command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
        model = eval(command)

    # Loading the tokenizer
    if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
        tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
    else:
        tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
    tokenizer.truncation_side = 'left'

    print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
    return model, tokenizer

def load_soft_prompt(name):
    if name == 'None':
        shared.soft_prompt = False
        shared.soft_prompt_tensor = None
    else:
        with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
            zf.extract('tensor.npy')
            zf.extract('meta.json')
            j = json.loads(open('meta.json', 'r').read())
            print(f"\nLoading the softprompt \"{name}\".")
            for field in j:
                if field != 'name':
                    if type(j[field]) is list:
                        print(f"{field}: {', '.join(j[field])}")
                    else:
                        print(f"{field}: {j[field]}")
            print()
            tensor = np.load('tensor.npy')
            Path('tensor.npy').unlink()
            Path('meta.json').unlink()
        tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
        tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))

        shared.soft_prompt = True
        shared.soft_prompt_tensor = tensor

    return name