File size: 7,624 Bytes
ad68ae6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import json
import os
import time
import zipfile
from pathlib import Path
import numpy as np
import torch
import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import modules.shared as shared
transformers.logging.set_verbosity_error()
local_rank = None
if shared.args.flexgen:
from flexgen.flex_opt import (CompressionConfig, ExecutionEnv, OptLM,
Policy, str2bool)
if shared.args.deepspeed:
import deepspeed
from transformers.deepspeed import (HfDeepSpeedConfig,
is_deepspeed_zero3_enabled)
from modules.deepspeed_parameters import generate_ds_config
# Distributed setup
local_rank = shared.args.local_rank if shared.args.local_rank is not None else int(os.getenv("LOCAL_RANK", "0"))
world_size = int(os.getenv("WORLD_SIZE", "1"))
torch.cuda.set_device(local_rank)
deepspeed.init_distributed()
ds_config = generate_ds_config(shared.args.bf16, 1 * world_size, shared.args.nvme_offload_dir)
dschf = HfDeepSpeedConfig(ds_config) # Keep this object alive for the Transformers integration
def load_model(model_name):
print(f"Loading {model_name}...")
t0 = time.time()
shared.is_RWKV = model_name.lower().startswith('rwkv-')
# Default settings
if not any([shared.args.cpu, shared.args.load_in_8bit, shared.args.gptq_bits, shared.args.auto_devices, shared.args.disk, shared.args.gpu_memory is not None, shared.args.cpu_memory is not None, shared.args.deepspeed, shared.args.flexgen, shared.is_RWKV]):
if any(size in shared.model_name.lower() for size in ('13b', '20b', '30b')):
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), device_map='auto', load_in_8bit=True)
else:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), low_cpu_mem_usage=True, torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16).cuda()
# FlexGen
elif shared.args.flexgen:
# Initialize environment
env = ExecutionEnv.create(shared.args.disk_cache_dir)
# Offloading policy
policy = Policy(1, 1,
shared.args.percent[0], shared.args.percent[1],
shared.args.percent[2], shared.args.percent[3],
shared.args.percent[4], shared.args.percent[5],
overlap=True, sep_layer=True, pin_weight=shared.args.pin_weight,
cpu_cache_compute=False, attn_sparsity=1.0,
compress_weight=shared.args.compress_weight,
comp_weight_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=0, symmetric=False),
compress_cache=False,
comp_cache_config=CompressionConfig(
num_bits=4, group_size=64,
group_dim=2, symmetric=False))
model = OptLM(f"facebook/{shared.model_name}", env, "models", policy)
# DeepSpeed ZeRO-3
elif shared.args.deepspeed:
model = AutoModelForCausalLM.from_pretrained(Path(f"models/{shared.model_name}"), torch_dtype=torch.bfloat16 if shared.args.bf16 else torch.float16)
model = deepspeed.initialize(model=model, config_params=ds_config, model_parameters=None, optimizer=None, lr_scheduler=None)[0]
model.module.eval() # Inference
print(f"DeepSpeed ZeRO-3 is enabled: {is_deepspeed_zero3_enabled()}")
# RMKV model (not on HuggingFace)
elif shared.is_RWKV:
from modules.RWKV import RWKVModel, RWKVTokenizer
model = RWKVModel.from_pretrained(Path(f'models/{model_name}'), dtype="fp32" if shared.args.cpu else "bf16" if shared.args.bf16 else "fp16", device="cpu" if shared.args.cpu else "cuda")
tokenizer = RWKVTokenizer.from_pretrained(Path('models'))
return model, tokenizer
# Quantized model
elif shared.args.gptq_bits > 0:
from modules.GPTQ_loader import load_quantized
model = load_quantized(model_name)
# Custom
else:
command = "AutoModelForCausalLM.from_pretrained"
params = ["low_cpu_mem_usage=True"]
if not shared.args.cpu and not torch.cuda.is_available():
print("Warning: no GPU has been detected.\nFalling back to CPU mode.\n")
shared.args.cpu = True
if shared.args.cpu:
params.append("low_cpu_mem_usage=True")
params.append("torch_dtype=torch.float32")
else:
params.append("device_map='auto'")
params.append("load_in_8bit=True" if shared.args.load_in_8bit else "torch_dtype=torch.bfloat16" if shared.args.bf16 else "torch_dtype=torch.float16")
if shared.args.gpu_memory:
memory_map = shared.args.gpu_memory
max_memory = f"max_memory={{0: '{memory_map[0]}GiB'"
for i in range(1, len(memory_map)):
max_memory += (f", {i}: '{memory_map[i]}GiB'")
max_memory += (f", 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
params.append(max_memory)
elif not shared.args.load_in_8bit:
total_mem = (torch.cuda.get_device_properties(0).total_memory/(1024*1024))
suggestion = round((total_mem-1000)/1000)*1000
if total_mem-suggestion < 800:
suggestion -= 1000
suggestion = int(round(suggestion/1000))
print(f"\033[1;32;1mAuto-assiging --gpu-memory {suggestion} for your GPU to try to prevent out-of-memory errors.\nYou can manually set other values.\033[0;37;0m")
params.append(f"max_memory={{0: '{suggestion}GiB', 'cpu': '{shared.args.cpu_memory or '99'}GiB'}}")
if shared.args.disk:
params.append(f"offload_folder='{shared.args.disk_cache_dir}'")
command = f"{command}(Path(f'models/{shared.model_name}'), {', '.join(set(params))})"
model = eval(command)
# Loading the tokenizer
if shared.model_name.lower().startswith(('gpt4chan', 'gpt-4chan', '4chan')) and Path("models/gpt-j-6B/").exists():
tokenizer = AutoTokenizer.from_pretrained(Path("models/gpt-j-6B/"))
else:
tokenizer = AutoTokenizer.from_pretrained(Path(f"models/{shared.model_name}/"))
tokenizer.truncation_side = 'left'
print(f"Loaded the model in {(time.time()-t0):.2f} seconds.")
return model, tokenizer
def load_soft_prompt(name):
if name == 'None':
shared.soft_prompt = False
shared.soft_prompt_tensor = None
else:
with zipfile.ZipFile(Path(f'softprompts/{name}.zip')) as zf:
zf.extract('tensor.npy')
zf.extract('meta.json')
j = json.loads(open('meta.json', 'r').read())
print(f"\nLoading the softprompt \"{name}\".")
for field in j:
if field != 'name':
if type(j[field]) is list:
print(f"{field}: {', '.join(j[field])}")
else:
print(f"{field}: {j[field]}")
print()
tensor = np.load('tensor.npy')
Path('tensor.npy').unlink()
Path('meta.json').unlink()
tensor = torch.Tensor(tensor).to(device=shared.model.device, dtype=shared.model.dtype)
tensor = torch.reshape(tensor, (1, tensor.shape[0], tensor.shape[1]))
shared.soft_prompt = True
shared.soft_prompt_tensor = tensor
return name
|