import gradio as gr title = "DPR" description = "Gradio Demo for DPR. To use it, simply add your text, or click one of the examples to load them. Read more at the links below." article = "
" examples = [ ["Hello, is my dog cute ?","dpr-question_encoder-bert-base-multilingual"] ] io1 = gr.Interface.load("huggingface/voidful/dpr-question_encoder-bert-base-multilingual") io2 = gr.Interface.load("huggingface/sivasankalpp/dpr-multidoc2dial-structure-question-encoder") def inference(inputtext, model): if model == "dpr-question_encoder-bert-base-multilingual": outlabel = io1(inputtext) else: outlabel = io2(inputtext) return outlabel gr.Interface( inference, [gr.inputs.Textbox(label="Context",lines=10),gr.inputs.Dropdown(choices=["dpr-question_encoder-bert-base-multilingual","dpr-multidoc2dial-structure-question-encoder"], type="value", default="dpr-question_encoder-bert-base-multilingual", label="model")], [gr.outputs.Dataframe(type="pandas",label="Output")], examples=examples, article=article, title=title, description=description).launch(enable_queue=True)