XThomasBU commited on
Commit
9b7a7cf
·
1 Parent(s): 05f78f2
code/main.py CHANGED
@@ -1,14 +1,22 @@
 
 
 
 
 
 
 
 
 
1
  import json
2
  import yaml
3
  import os
4
  from typing import Any, Dict, no_type_check
5
  import chainlit as cl
6
  from modules.chat.llm_tutor import LLMTutor
7
- from modules.chat_processor.chat_processor import ChatProcessor
8
- from modules.config.constants import LLAMA_PATH
9
  from modules.chat.helpers import get_sources
10
  import copy
11
  from typing import Optional
 
12
 
13
  USER_TIMEOUT = 60_000
14
  SYSTEM = "System 🖥️"
@@ -18,12 +26,18 @@ YOU = "You 😃"
18
  ERROR = "Error 🚫"
19
 
20
 
 
 
 
 
 
21
  class Chatbot:
22
  def __init__(self):
23
  """
24
  Initialize the Chatbot class.
25
  """
26
  self.config = self._load_config()
 
27
 
28
  def _load_config(self):
29
  """
@@ -60,11 +74,9 @@ class Chatbot:
60
  self.chain = self.llm_tutor.qa_bot(memory=memory)
61
 
62
  tags = [chat_profile, self.config["vectorstore"]["db_option"]]
63
- self.chat_processor.config = self.config
64
 
65
  cl.user_session.set("chain", self.chain)
66
  cl.user_session.set("llm_tutor", self.llm_tutor)
67
- cl.user_session.set("chat_processor", self.chat_processor)
68
 
69
  @no_type_check
70
  async def update_llm(self, new_settings: Dict[str, Any]):
@@ -91,14 +103,21 @@ class Chatbot:
91
  cl.input_widget.Select(
92
  id="chat_model",
93
  label="Model Name (Default GPT-3)",
94
- values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4"],
95
- initial_index=["local_llm", "gpt-3.5-turbo-1106", "gpt-4"].index(config["llm_params"]["llm_loader"]),
 
 
 
 
 
96
  ),
97
  cl.input_widget.Select(
98
  id="retriever_method",
99
  label="Retriever (Default FAISS)",
100
  values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
101
- initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(config["vectorstore"]["db_option"])
 
 
102
  ),
103
  cl.input_widget.Slider(
104
  id="memory_window",
@@ -112,7 +131,7 @@ class Chatbot:
112
  id="view_sources", label="View Sources", initial=False
113
  ),
114
  cl.input_widget.Switch(
115
- id="stream_response", label="Stream response", initial=True
116
  ),
117
  cl.input_widget.Select(
118
  id="llm_style",
@@ -158,28 +177,37 @@ class Chatbot:
158
  """
159
  Set starter messages for the chatbot.
160
  """
161
- return [
162
- cl.Starter(
163
- label="recording on CNNs?",
164
- message="Where can I find the recording for the lecture on Transformers?",
165
- icon="/public/adv-screen-recorder-svgrepo-com.svg",
166
- ),
167
- cl.Starter(
168
- label="where's the slides?",
169
- message="When are the lectures? I can't find the schedule.",
170
- icon="/public/alarmy-svgrepo-com.svg",
171
- ),
172
- cl.Starter(
173
- label="Due Date?",
174
- message="When is the final project due?",
175
- icon="/public/calendar-samsung-17-svgrepo-com.svg",
176
- ),
177
- cl.Starter(
178
- label="Explain backprop.",
179
- message="I didn't understand the math behind backprop, could you explain it?",
180
- icon="/public/acastusphoton-svgrepo-com.svg",
181
- ),
182
- ]
 
 
 
 
 
 
 
 
 
183
 
184
  def rename(self, orig_author: str):
185
  """
@@ -194,44 +222,25 @@ class Chatbot:
194
  rename_dict = {"Chatbot": "AI Tutor"}
195
  return rename_dict.get(orig_author, orig_author)
196
 
197
- async def start(self):
198
  """
199
  Start the chatbot, initialize settings widgets,
200
  and display and load previous conversation if chat logging is enabled.
201
  """
202
- await cl.Message(content="Welcome back! Setting up your session...").send()
203
 
204
  await self.make_llm_settings_widgets(self.config)
205
  user = cl.user_session.get("user")
206
  self.user = {
207
  "user_id": user.identifier,
208
- "session_id": "1234",
209
  }
 
 
210
  cl.user_session.set("user", self.user)
211
- self.chat_processor = ChatProcessor(self.config, self.user)
212
  self.llm_tutor = LLMTutor(self.config, user=self.user)
213
- if self.config["chat_logging"]["log_chat"]:
214
- # get previous conversation of the user
215
- memory = self.chat_processor.processor.prev_conv
216
- if len(self.chat_processor.processor.prev_conv) > 0:
217
- for idx, conv in enumerate(self.chat_processor.processor.prev_conv):
218
- await cl.Message(
219
- author="User", content=conv[0], type="user_message"
220
- ).send()
221
- await cl.Message(author="AI Tutor", content=conv[1]).send()
222
- else:
223
- memory = []
224
  self.chain = self.llm_tutor.qa_bot(memory=memory)
225
  cl.user_session.set("llm_tutor", self.llm_tutor)
226
  cl.user_session.set("chain", self.chain)
227
- cl.user_session.set("chat_processor", self.chat_processor)
228
-
229
- async def on_chat_end(self):
230
- """
231
- Handle the end of the chat session by sending a goodbye message.
232
- # TODO: Not used as of now - useful when the implementation for the conversation limiting is implemented
233
- """
234
- await cl.Message(content="Sorry, I have to go now. Goodbye!").send()
235
 
236
  async def stream_response(self, response):
237
  """
@@ -245,8 +254,8 @@ class Chatbot:
245
 
246
  output = {}
247
  for chunk in response:
248
- if 'answer' in chunk:
249
- await msg.stream_token(chunk['answer'])
250
 
251
  for key in chunk:
252
  if key not in output:
@@ -262,39 +271,88 @@ class Chatbot:
262
  Args:
263
  message: The incoming chat message.
264
  """
 
265
  chain = cl.user_session.get("chain")
266
  llm_settings = cl.user_session.get("llm_settings", {})
267
  view_sources = llm_settings.get("view_sources", False)
268
- stream = (llm_settings.get("stream_response", True)) or (not self.config["llm_params"]["stream"])
269
-
270
- processor = cl.user_session.get("chat_processor")
271
- res = await processor.rag(message.content, chain, stream)
 
 
 
 
 
 
 
 
272
 
273
  if stream:
 
274
  res = await self.stream_response(res)
 
 
275
 
276
  answer = res.get("answer", res.get("result"))
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
  answer_with_sources, source_elements, sources_dict = get_sources(
279
  res, answer, stream=stream, view_sources=view_sources
280
  )
281
- processor._process(message.content, answer, sources_dict)
282
 
283
  await cl.Message(content=answer_with_sources, elements=source_elements).send()
284
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
  @cl.oauth_callback
286
  def auth_callback(
287
- provider_id: str,
288
- token: str,
289
- raw_user_data: Dict[str, str],
290
- default_user: cl.User,
291
  ) -> Optional[cl.User]:
292
  return default_user
293
 
 
294
  chatbot = Chatbot()
295
  cl.set_starters(chatbot.set_starters)
296
  cl.author_rename(chatbot.rename)
297
  cl.on_chat_start(chatbot.start)
298
- cl.on_chat_end(chatbot.on_chat_end)
299
  cl.on_message(chatbot.main)
300
  cl.on_settings_update(chatbot.update_llm)
 
1
+ import chainlit.data as cl_data
2
+
3
+ from modules.config.constants import (
4
+ LLAMA_PATH,
5
+ LITERAL_API_KEY_LOGGING,
6
+ LITERAL_API_URL,
7
+ )
8
+ from modules.chat_processor.literal_ai import CustomLiteralDataLayer
9
+
10
  import json
11
  import yaml
12
  import os
13
  from typing import Any, Dict, no_type_check
14
  import chainlit as cl
15
  from modules.chat.llm_tutor import LLMTutor
 
 
16
  from modules.chat.helpers import get_sources
17
  import copy
18
  from typing import Optional
19
+ from chainlit.types import ThreadDict
20
 
21
  USER_TIMEOUT = 60_000
22
  SYSTEM = "System 🖥️"
 
26
  ERROR = "Error 🚫"
27
 
28
 
29
+ cl_data._data_layer = CustomLiteralDataLayer(
30
+ api_key=LITERAL_API_KEY_LOGGING, server=LITERAL_API_URL
31
+ )
32
+
33
+
34
  class Chatbot:
35
  def __init__(self):
36
  """
37
  Initialize the Chatbot class.
38
  """
39
  self.config = self._load_config()
40
+ self.literal_client = cl_data._data_layer.client
41
 
42
  def _load_config(self):
43
  """
 
74
  self.chain = self.llm_tutor.qa_bot(memory=memory)
75
 
76
  tags = [chat_profile, self.config["vectorstore"]["db_option"]]
 
77
 
78
  cl.user_session.set("chain", self.chain)
79
  cl.user_session.set("llm_tutor", self.llm_tutor)
 
80
 
81
  @no_type_check
82
  async def update_llm(self, new_settings: Dict[str, Any]):
 
103
  cl.input_widget.Select(
104
  id="chat_model",
105
  label="Model Name (Default GPT-3)",
106
+ values=["local_llm", "gpt-3.5-turbo-1106", "gpt-4", "gpt-4o-mini"],
107
+ initial_index=[
108
+ "local_llm",
109
+ "gpt-3.5-turbo-1106",
110
+ "gpt-4",
111
+ "gpt-4o-mini",
112
+ ].index(config["llm_params"]["llm_loader"]),
113
  ),
114
  cl.input_widget.Select(
115
  id="retriever_method",
116
  label="Retriever (Default FAISS)",
117
  values=["FAISS", "Chroma", "RAGatouille", "RAPTOR"],
118
+ initial_index=["FAISS", "Chroma", "RAGatouille", "RAPTOR"].index(
119
+ config["vectorstore"]["db_option"]
120
+ ),
121
  ),
122
  cl.input_widget.Slider(
123
  id="memory_window",
 
131
  id="view_sources", label="View Sources", initial=False
132
  ),
133
  cl.input_widget.Switch(
134
+ id="stream_response", label="Stream response", initial=False
135
  ),
136
  cl.input_widget.Select(
137
  id="llm_style",
 
177
  """
178
  Set starter messages for the chatbot.
179
  """
180
+ # Return Starters only if the chat is new
181
+
182
+ try:
183
+ thread = cl_data._data_layer.get_thread(
184
+ cl.context.session.thread_id
185
+ ) # see if the thread has any steps
186
+ if thread.steps or len(thread.steps) > 0:
187
+ return None
188
+ except:
189
+ return [
190
+ cl.Starter(
191
+ label="recording on CNNs?",
192
+ message="Where can I find the recording for the lecture on Transformers?",
193
+ icon="/public/adv-screen-recorder-svgrepo-com.svg",
194
+ ),
195
+ cl.Starter(
196
+ label="where's the slides?",
197
+ message="When are the lectures? I can't find the schedule.",
198
+ icon="/public/alarmy-svgrepo-com.svg",
199
+ ),
200
+ cl.Starter(
201
+ label="Due Date?",
202
+ message="When is the final project due?",
203
+ icon="/public/calendar-samsung-17-svgrepo-com.svg",
204
+ ),
205
+ cl.Starter(
206
+ label="Explain backprop.",
207
+ message="I didn't understand the math behind backprop, could you explain it?",
208
+ icon="/public/acastusphoton-svgrepo-com.svg",
209
+ ),
210
+ ]
211
 
212
  def rename(self, orig_author: str):
213
  """
 
222
  rename_dict = {"Chatbot": "AI Tutor"}
223
  return rename_dict.get(orig_author, orig_author)
224
 
225
+ async def start(self, thread=None, memory=[]):
226
  """
227
  Start the chatbot, initialize settings widgets,
228
  and display and load previous conversation if chat logging is enabled.
229
  """
 
230
 
231
  await self.make_llm_settings_widgets(self.config)
232
  user = cl.user_session.get("user")
233
  self.user = {
234
  "user_id": user.identifier,
235
+ "session_id": cl.context.session.thread_id,
236
  }
237
+ print(self.user)
238
+
239
  cl.user_session.set("user", self.user)
 
240
  self.llm_tutor = LLMTutor(self.config, user=self.user)
 
 
 
 
 
 
 
 
 
 
 
241
  self.chain = self.llm_tutor.qa_bot(memory=memory)
242
  cl.user_session.set("llm_tutor", self.llm_tutor)
243
  cl.user_session.set("chain", self.chain)
 
 
 
 
 
 
 
 
244
 
245
  async def stream_response(self, response):
246
  """
 
254
 
255
  output = {}
256
  for chunk in response:
257
+ if "answer" in chunk:
258
+ await msg.stream_token(chunk["answer"])
259
 
260
  for key in chunk:
261
  if key not in output:
 
271
  Args:
272
  message: The incoming chat message.
273
  """
274
+
275
  chain = cl.user_session.get("chain")
276
  llm_settings = cl.user_session.get("llm_settings", {})
277
  view_sources = llm_settings.get("view_sources", False)
278
+ stream = (llm_settings.get("stream_response", True)) or (
279
+ not self.config["llm_params"]["stream"]
280
+ )
281
+ user_query_dict = {"input": message.content}
282
+ # Define the base configuration
283
+ chain_config = {
284
+ "configurable": {
285
+ "user_id": self.user["user_id"],
286
+ "conversation_id": self.user["session_id"],
287
+ "memory_window": self.config["llm_params"]["memory_window"],
288
+ }
289
+ }
290
 
291
  if stream:
292
+ res = chain.stream(user_query=user_query_dict, config=chain_config)
293
  res = await self.stream_response(res)
294
+ else:
295
+ res = chain.invoke(user_query=user_query_dict, config=chain_config)
296
 
297
  answer = res.get("answer", res.get("result"))
298
 
299
+ with cl_data._data_layer.client.step(
300
+ type="retrieval",
301
+ name="RAG",
302
+ thread_id=cl.context.session.thread_id,
303
+ # tags=self.tags,
304
+ ) as step:
305
+ step.input = {"question": user_query_dict["input"]}
306
+ step.output = {
307
+ "chat_history": res.get("chat_history"),
308
+ "context": res.get("context"),
309
+ "answer": answer,
310
+ "rephrase_prompt": res.get("rephrase_prompt"),
311
+ "qa_prompt": res.get("qa_prompt"),
312
+ }
313
+ step.metadata = self.config
314
+
315
  answer_with_sources, source_elements, sources_dict = get_sources(
316
  res, answer, stream=stream, view_sources=view_sources
317
  )
 
318
 
319
  await cl.Message(content=answer_with_sources, elements=source_elements).send()
320
 
321
+ async def on_chat_resume(self, thread: ThreadDict):
322
+ steps = thread["steps"]
323
+ conversation_pairs = []
324
+
325
+ user_message = None
326
+ k = self.config["llm_params"]["memory_window"]
327
+ count = 0
328
+
329
+ for step in steps:
330
+ if step["type"] == "user_message":
331
+ user_message = step["output"]
332
+ elif step["type"] == "assistant_message" and user_message is not None:
333
+ assistant_message = step["output"]
334
+ conversation_pairs.append((user_message, assistant_message))
335
+ user_message = None
336
+ count += 1
337
+ if count >= k:
338
+ break
339
+
340
+ await self.start(thread, memory=conversation_pairs)
341
+
342
  @cl.oauth_callback
343
  def auth_callback(
344
+ provider_id: str,
345
+ token: str,
346
+ raw_user_data: Dict[str, str],
347
+ default_user: cl.User,
348
  ) -> Optional[cl.User]:
349
  return default_user
350
 
351
+
352
  chatbot = Chatbot()
353
  cl.set_starters(chatbot.set_starters)
354
  cl.author_rename(chatbot.rename)
355
  cl.on_chat_start(chatbot.start)
356
+ cl.on_chat_resume(chatbot.on_chat_resume)
357
  cl.on_message(chatbot.main)
358
  cl.on_settings_update(chatbot.update_llm)
code/modules/chat/chat_model_loader.py CHANGED
@@ -16,7 +16,11 @@ class ChatModelLoader:
16
  self.huggingface_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
17
 
18
  def load_chat_model(self):
19
- if self.config["llm_params"]["llm_loader"] in ["gpt-3.5-turbo-1106", "gpt-4"]:
 
 
 
 
20
  llm = ChatOpenAI(model_name=self.config["llm_params"]["llm_loader"])
21
  elif self.config["llm_params"]["llm_loader"] == "local_llm":
22
  n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
 
16
  self.huggingface_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
17
 
18
  def load_chat_model(self):
19
+ if self.config["llm_params"]["llm_loader"] in [
20
+ "gpt-3.5-turbo-1106",
21
+ "gpt-4",
22
+ "gpt-4o-mini",
23
+ ]:
24
  llm = ChatOpenAI(model_name=self.config["llm_params"]["llm_loader"])
25
  elif self.config["llm_params"]["llm_loader"] == "local_llm":
26
  n_batch = 512 # Should be between 1 and n_ctx, consider the amount of VRAM in your GPU.
code/modules/chat/langgraph/langgraph_rag.py DELETED
@@ -1,303 +0,0 @@
1
- # Adapted from https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_crag.ipynb?ref=blog.langchain.dev
2
-
3
- from typing import List
4
-
5
- from typing_extensions import TypedDict
6
- from langgraph.graph import END, StateGraph, START
7
- from modules.chat.base import BaseRAG
8
- from langchain.memory import ChatMessageHistory
9
- from langchain_core.prompts import ChatPromptTemplate
10
- from langchain_core.pydantic_v1 import BaseModel, Field
11
- from langchain_openai import ChatOpenAI
12
- from langchain_core.output_parsers import StrOutputParser
13
- from langchain_core.prompts import ChatPromptTemplate
14
-
15
-
16
- class GradeDocuments(BaseModel):
17
- """Binary score for relevance check on retrieved documents."""
18
-
19
- binary_score: str = Field(
20
- description="Documents are relevant to the question, 'yes' or 'no'"
21
- )
22
-
23
-
24
- class GraphState(TypedDict):
25
- """
26
- Represents the state of our graph.
27
-
28
- Attributes:
29
- question: question
30
- generation: LLM generation
31
- documents: list of documents
32
- """
33
-
34
- question: str
35
- generation: str
36
- documents: List[str]
37
-
38
-
39
- class Langgraph_RAG(BaseRAG):
40
- def __init__(self, llm, memory, retriever, qa_prompt: str, rephrase_prompt: str):
41
- """
42
- Initialize the Langgraph_RAG class.
43
-
44
- Args:
45
- llm (LanguageModelLike): The language model instance.
46
- memory (BaseChatMessageHistory): The chat message history instance.
47
- retriever (BaseRetriever): The retriever instance.
48
- qa_prompt (str): The QA prompt string.
49
- rephrase_prompt (str): The rephrase prompt string.
50
- """
51
- self.llm = llm
52
- self.structured_llm_grader = llm.with_structured_output(GradeDocuments)
53
- self.memory = self.add_history_from_list(memory)
54
- self.retriever = retriever
55
- self.qa_prompt = (
56
- "You are an AI Tutor for the course DS598, taught by Prof. Thomas Gardos. Answer the user's question using the provided context. Only use the context if it is relevant. The context is ordered by relevance. "
57
- "If you don't know the answer, do your best without making things up. Keep the conversation flowing naturally. "
58
- "Speak in a friendly and engaging manner, like talking to a friend. Avoid sounding repetitive or robotic.\n\n"
59
- "Context:\n{context}\n\n"
60
- "Answer the student's question below in a friendly, concise, and engaging manner. Use the context and history only if relevant, otherwise, engage in a free-flowing conversation.\n"
61
- "Student: {question}\n"
62
- "AI Tutor:"
63
- )
64
- self.rephrase_prompt = rephrase_prompt
65
- self.store = {}
66
-
67
- ## Fix below ##
68
-
69
- system = """You are a grader assessing relevance of a retrieved document to a user question. \n
70
- If the document contains keyword(s) or semantic meaning related to the question, grade it as relevant. \n
71
- Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question."""
72
- grade_prompt = ChatPromptTemplate.from_messages(
73
- [
74
- ("system", system),
75
- (
76
- "human",
77
- "Retrieved document: \n\n {document} \n\n User question: {question}",
78
- ),
79
- ]
80
- )
81
-
82
- self.retrieval_grader = grade_prompt | self.structured_llm_grader
83
-
84
- system = """You a question re-writer that converts an input question to a better version that is optimized \n
85
- for web search. Look at the input and try to reason about the underlying semantic intent / meaning."""
86
- re_write_prompt = ChatPromptTemplate.from_messages(
87
- [
88
- ("system", system),
89
- (
90
- "human",
91
- "Here is the initial question: \n\n {question} \n Formulate an improved question.",
92
- ),
93
- ]
94
- )
95
-
96
- self.question_rewriter = re_write_prompt | self.llm | StrOutputParser()
97
-
98
- # Generate
99
- self.qa_prompt_template = ChatPromptTemplate.from_template(self.qa_prompt)
100
- self.rag_chain = self.qa_prompt_template | self.llm | StrOutputParser()
101
-
102
- ###
103
-
104
- # build the agentic graph
105
- self.app = self.create_agentic_graph()
106
-
107
- def retrieve(self, state):
108
- """
109
- Retrieve documents
110
-
111
- Args:
112
- state (dict): The current graph state
113
-
114
- Returns:
115
- state (dict): New key added to state, documents, that contains retrieved documents
116
- """
117
- print("---RETRIEVE---")
118
- question = state["question"]
119
-
120
- # Retrieval
121
- documents = self.retriever.get_relevant_documents(question)
122
- return {"documents": documents, "question": question}
123
-
124
- def generate(self, state):
125
- """
126
- Generate answer
127
-
128
- Args:
129
- state (dict): The current graph state
130
-
131
- Returns:
132
- state (dict): New key added to state, generation, that contains LLM generation
133
- """
134
- print("---GENERATE---")
135
- question = state["question"]
136
- documents = state["documents"]
137
-
138
- # RAG generation
139
- generation = self.rag_chain.invoke({"context": documents, "question": question})
140
- return {"documents": documents, "question": question, "generation": generation}
141
-
142
- def transform_query(self, state):
143
- """
144
- Transform the query to produce a better question.
145
-
146
- Args:
147
- state (dict): The current graph state
148
-
149
- Returns:
150
- state (dict): Updates question key with a re-phrased question
151
- """
152
-
153
- print("---TRANSFORM QUERY---")
154
- question = state["question"]
155
- documents = state["documents"]
156
-
157
- # Re-write question
158
- better_question = self.question_rewriter.invoke({"question": question})
159
- return {"documents": documents, "question": better_question}
160
-
161
- def grade_documents(self, state):
162
- """
163
- Determines whether the retrieved documents are relevant to the question.
164
-
165
- Args:
166
- state (dict): The current graph state
167
-
168
- Returns:
169
- state (dict): Updates documents key with only filtered relevant documents
170
- """
171
-
172
- print("---CHECK DOCUMENT RELEVANCE TO QUESTION---")
173
- question = state["question"]
174
- documents = state["documents"]
175
-
176
- # Score each doc
177
- filtered_docs = []
178
- web_search = "No"
179
- for d in documents:
180
- score = self.retrieval_grader.invoke(
181
- {"question": question, "document": d.page_content}
182
- )
183
- grade = score.binary_score
184
- if grade == "yes":
185
- print("---GRADE: DOCUMENT RELEVANT---")
186
- filtered_docs.append(d)
187
- else:
188
- print("---GRADE: DOCUMENT NOT RELEVANT---")
189
- web_search = "Yes"
190
- continue
191
- return {
192
- "documents": filtered_docs,
193
- "question": question,
194
- "web_search": web_search,
195
- }
196
-
197
- def decide_to_generate(self, state):
198
- """
199
- Determines whether to generate an answer, or re-generate a question.
200
-
201
- Args:
202
- state (dict): The current graph state
203
-
204
- Returns:
205
- str: Binary decision for next node to call
206
- """
207
-
208
- print("---ASSESS GRADED DOCUMENTS---")
209
- state["question"]
210
- web_search = state["web_search"]
211
- state["documents"]
212
-
213
- if web_search == "Yes":
214
- # All documents have been filtered check_relevance
215
- # We will re-generate a new query
216
- print(
217
- "---DECISION: ALL DOCUMENTS ARE NOT RELEVANT TO QUESTION, TRANSFORM QUERY---"
218
- )
219
- return "transform_query"
220
- else:
221
- # We have relevant documents, so generate answer
222
- print("---DECISION: GENERATE---")
223
- return "generate"
224
-
225
- def create_agentic_graph(self):
226
- """
227
- Create an agentic graph to answer questions.
228
-
229
- Returns:
230
- dict: Agentic graph
231
- """
232
- self.workflow = StateGraph(GraphState)
233
- self.workflow.add_node("retrieve", self.retrieve)
234
- self.workflow.add_node(
235
- "grade_documents", self.grade_documents
236
- ) # grade documents
237
- self.workflow.add_node("generate", self.generate) # generatae
238
- self.workflow.add_node(
239
- "transform_query", self.transform_query
240
- ) # transform_query
241
-
242
- # build the graph
243
- self.workflow.add_edge(START, "retrieve")
244
- self.workflow.add_edge("retrieve", "grade_documents")
245
- self.workflow.add_conditional_edges(
246
- "grade_documents",
247
- self.decide_to_generate,
248
- {
249
- "transform_query": "transform_query",
250
- "generate": "generate",
251
- },
252
- )
253
-
254
- self.workflow.add_edge("transform_query", "generate")
255
- self.workflow.add_edge("generate", END)
256
-
257
- # Compile
258
- app = self.workflow.compile()
259
- return app
260
-
261
- def invoke(self, user_query, config):
262
- """
263
- Invoke the chain.
264
-
265
- Args:
266
- kwargs: The input variables.
267
-
268
- Returns:
269
- dict: The output variables.
270
- """
271
-
272
- inputs = {
273
- "question": user_query["input"],
274
- }
275
-
276
- for output in self.app.stream(inputs):
277
- for key, value in output.items():
278
- # Node
279
- print(f"Node {key} returned: {value}")
280
- print("\n\n")
281
-
282
- print(value["generation"])
283
-
284
- # rename generation to answer
285
- value["answer"] = value.pop("generation")
286
- value["context"] = value.pop("documents")
287
-
288
- return value
289
-
290
- def add_history_from_list(self, history_list):
291
- """
292
- Add messages from a list to the chat history.
293
-
294
- Args:
295
- messages (list): The list of messages to add.
296
- """
297
- history = ChatMessageHistory()
298
-
299
- for idx, message_pairs in enumerate(history_list):
300
- history.add_user_message(message_pairs[0])
301
- history.add_ai_message(message_pairs[1])
302
-
303
- return history
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/modules/chat/llm_tutor.py CHANGED
@@ -3,7 +3,6 @@ from modules.chat.chat_model_loader import ChatModelLoader
3
  from modules.vectorstore.store_manager import VectorStoreManager
4
  from modules.retriever.retriever import Retriever
5
  from modules.chat.langchain.langchain_rag import Langchain_RAG
6
- from modules.chat.langgraph.langgraph_rag import Langgraph_RAG
7
 
8
 
9
  class LLMTutor:
@@ -111,14 +110,6 @@ class LLMTutor:
111
  qa_prompt=qa_prompt,
112
  rephrase_prompt=rephrase_prompt,
113
  )
114
- elif self.config["llm_params"]["llm_arch"] == "langgraph_agentic":
115
- self.qa_chain = Langgraph_RAG(
116
- llm=llm,
117
- memory=memory,
118
- retriever=retriever,
119
- qa_prompt=qa_prompt,
120
- rephrase_prompt=rephrase_prompt,
121
- )
122
  else:
123
  raise ValueError(
124
  f"Invalid LLM Architecture: {self.config['llm_params']['llm_arch']}"
 
3
  from modules.vectorstore.store_manager import VectorStoreManager
4
  from modules.retriever.retriever import Retriever
5
  from modules.chat.langchain.langchain_rag import Langchain_RAG
 
6
 
7
 
8
  class LLMTutor:
 
110
  qa_prompt=qa_prompt,
111
  rephrase_prompt=rephrase_prompt,
112
  )
 
 
 
 
 
 
 
 
113
  else:
114
  raise ValueError(
115
  f"Invalid LLM Architecture: {self.config['llm_params']['llm_arch']}"
code/modules/chat_processor/base.py DELETED
@@ -1,18 +0,0 @@
1
- # Template for chat processor classes
2
-
3
-
4
- class ChatProcessorBase:
5
- def __init__(self):
6
- pass
7
-
8
- def process(self, message):
9
- """
10
- Processes and Logs the message
11
- """
12
- raise NotImplementedError("process method not implemented")
13
-
14
- async def rag(self, user_query: dict, config: dict, chain):
15
- """
16
- Retrieves the response from the chain
17
- """
18
- raise NotImplementedError("rag method not implemented")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/modules/chat_processor/chat_processor.py DELETED
@@ -1,55 +0,0 @@
1
- from modules.chat_processor.literal_ai import LiteralaiChatProcessor
2
-
3
-
4
- class ChatProcessor:
5
- def __init__(self, config, user, tags=None):
6
- self.config = config
7
- self.chat_processor_type = self.config["chat_logging"]["platform"]
8
- self.logging = self.config["chat_logging"]["log_chat"]
9
- self.user = user
10
- if tags is None:
11
- self.tags = self._create_tags()
12
- else:
13
- self.tags = tags
14
- if self.logging:
15
- self._init_processor()
16
-
17
- def _create_tags(self):
18
- tags = []
19
- tags.append(self.config["vectorstore"]["db_option"])
20
- return tags
21
-
22
- def _init_processor(self):
23
- if self.chat_processor_type == "literalai":
24
- self.processor = LiteralaiChatProcessor(self.user, self.tags)
25
- else:
26
- raise ValueError(
27
- f"Chat processor type {self.chat_processor_type} not supported"
28
- )
29
-
30
- def _process(self, user_message, assistant_message, source_dict):
31
- if self.logging:
32
- return self.processor.process(user_message, assistant_message, source_dict)
33
- else:
34
- pass
35
-
36
- async def rag(self, user_query: str, chain, stream):
37
- user_query_dict = {"input": user_query}
38
- # Define the base configuration
39
- config = {
40
- "configurable": {
41
- "user_id": self.user["user_id"],
42
- "conversation_id": self.user["session_id"],
43
- "memory_window": self.config["llm_params"]["memory_window"],
44
- }
45
- }
46
-
47
- # Process the user query using the appropriate method
48
- if self.logging:
49
- return await self.processor.rag(
50
- user_query=user_query_dict, config=config, chain=chain
51
- )
52
- else:
53
- if stream:
54
- return chain.stream(user_query=user_query_dict, config=config)
55
- return chain.invoke(user_query=user_query_dict, config=config)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/modules/chat_processor/literal_ai.py CHANGED
@@ -1,110 +1,7 @@
1
- from literalai import LiteralClient
2
- from literalai.api import LiteralAPI
3
- from literalai.filter import Filter as ThreadFilter
4
 
5
- import os
6
- from .base import ChatProcessorBase
7
 
8
-
9
- class LiteralaiChatProcessor(ChatProcessorBase):
10
- def __init__(self, user=None, tags=None):
11
- super().__init__()
12
- self.user = user
13
- self.tags = tags
14
- self.literal_client = LiteralClient(api_key=os.getenv("LITERAL_API_KEY"))
15
- self.literal_api = LiteralAPI(
16
- api_key=os.getenv("LITERAL_API_KEY"), url=os.getenv("LITERAL_API_URL")
17
- )
18
- self.literal_client.reset_context()
19
- self.user_info = self._fetch_userinfo()
20
- self.user_thread = self._fetch_user_threads()
21
- if len(self.user_thread["data"]) == 0:
22
- self.thread = self._create_user_thread()
23
- else:
24
- self.thread = self._get_user_thread()
25
- self.thread_id = self.thread["id"]
26
-
27
- self.prev_conv = self._get_prev_k_conversations()
28
-
29
- def _get_user_thread(self):
30
- thread = self.literal_api.get_thread(id=self.user_thread["data"][0]["id"])
31
- return thread.to_dict()
32
-
33
- def _create_user_thread(self):
34
- thread = self.literal_api.create_thread(
35
- name=f"{self.user_info['identifier']}",
36
- participant_id=self.user_info["metadata"]["id"],
37
- environment="dev",
38
- )
39
-
40
- return thread.to_dict()
41
-
42
- def _get_prev_k_conversations(self, k=3):
43
-
44
- steps = self.thread["steps"]
45
- conversation_pairs = []
46
- count = 0
47
- for i in range(len(steps) - 1, 0, -1):
48
- if (
49
- steps[i - 1]["type"] == "user_message"
50
- and steps[i]["type"] == "assistant_message"
51
- ):
52
- user_message = steps[i - 1]["output"]["content"]
53
- assistant_message = steps[i]["output"]["content"]
54
- conversation_pairs.append((user_message, assistant_message))
55
-
56
- count += 1
57
- if count >= k:
58
- break
59
-
60
- # Return the last k conversation pairs, reversed to maintain chronological order
61
- return conversation_pairs[::-1]
62
-
63
- def _fetch_user_threads(self):
64
- filters = filters = [
65
- {
66
- "operator": "eq",
67
- "field": "participantId",
68
- "value": self.user_info["metadata"]["id"],
69
- }
70
- ]
71
- user_threads = self.literal_api.get_threads(filters=filters)
72
- return user_threads.to_dict()
73
-
74
- def _fetch_userinfo(self):
75
- user_info = self.literal_api.get_or_create_user(
76
- identifier=self.user["user_id"]
77
- ).to_dict()
78
- # TODO: Have to do this more elegantly
79
- # update metadata with unique id for now
80
- # (literalai seems to not return the unique id as of now,
81
- # so have to explicitly update it in the metadata)
82
- user_info = self.literal_api.update_user(
83
- id=user_info["id"],
84
- metadata={
85
- "id": user_info["id"],
86
- },
87
- ).to_dict()
88
- return user_info
89
-
90
- def process(self, user_message, assistant_message, source_dict):
91
- with self.literal_client.thread(thread_id=self.thread_id) as thread:
92
- self.literal_client.message(
93
- content=user_message,
94
- type="user_message",
95
- name="User",
96
- )
97
- self.literal_client.message(
98
- content=assistant_message,
99
- type="assistant_message",
100
- name="AI_Tutor",
101
- )
102
-
103
- async def rag(self, user_query: dict, config: dict, chain):
104
- with self.literal_client.step(
105
- type="retrieval", name="RAG", thread_id=self.thread_id, tags=self.tags
106
- ) as step:
107
- step.input = {"question": user_query["input"]}
108
- res = chain.invoke(user_query, config)
109
- step.output = res
110
- return res
 
1
+ from chainlit.data import ChainlitDataLayer
 
 
2
 
 
 
3
 
4
+ # update custom methods here (Ref: https://github.com/Chainlit/chainlit/blob/4b533cd53173bcc24abe4341a7108f0070d60099/backend/chainlit/data/__init__.py)
5
+ class CustomLiteralDataLayer(ChainlitDataLayer):
6
+ def __init__(self, **kwargs):
7
+ super().__init__(**kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
code/modules/config/config.yml CHANGED
@@ -4,13 +4,12 @@ device: 'cpu' # str [cuda, cpu]
4
 
5
  vectorstore:
6
  load_from_HF: True # bool
7
- HF_path: "XThomasBU/Colbert_Index" # str
8
  embedd_files: False # bool
9
  data_path: '../storage/data' # str
10
  url_file_path: '../storage/data/urls.txt' # str
11
  expand_urls: True # bool
12
- db_option : 'FAISS' # str [FAISS, Chroma, RAGatouille, RAPTOR]
13
- db_path : 'vectorstores' # str
14
  model : 'sentence-transformers/all-MiniLM-L6-v2' # str [sentence-transformers/all-MiniLM-L6-v2, text-embedding-ada-002']
15
  search_top_k : 3 # int
16
  score_threshold : 0.2 # float
@@ -30,7 +29,7 @@ llm_params:
30
  use_history: True # bool
31
  memory_window: 3 # int
32
  llm_style: 'Normal' # str [Normal, ELI5, Socratic]
33
- llm_loader: 'gpt-3.5-turbo-1106' # str [local_llm, gpt-3.5-turbo-1106, gpt-4]
34
  openai_params:
35
  temperature: 0.7 # float
36
  local_llm_params:
 
4
 
5
  vectorstore:
6
  load_from_HF: True # bool
 
7
  embedd_files: False # bool
8
  data_path: '../storage/data' # str
9
  url_file_path: '../storage/data/urls.txt' # str
10
  expand_urls: True # bool
11
+ db_option : 'RAGatouille' # str [FAISS, Chroma, RAGatouille, RAPTOR]
12
+ db_path : '../vectorstores' # str
13
  model : 'sentence-transformers/all-MiniLM-L6-v2' # str [sentence-transformers/all-MiniLM-L6-v2, text-embedding-ada-002']
14
  search_top_k : 3 # int
15
  score_threshold : 0.2 # float
 
29
  use_history: True # bool
30
  memory_window: 3 # int
31
  llm_style: 'Normal' # str [Normal, ELI5, Socratic]
32
+ llm_loader: 'gpt-4o-mini' # str [local_llm, gpt-3.5-turbo-1106, gpt-4, gpt-4o-mini]
33
  openai_params:
34
  temperature: 0.7 # float
35
  local_llm_params:
code/modules/config/constants.py CHANGED
@@ -7,7 +7,7 @@ load_dotenv()
7
 
8
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
9
  HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
10
- LITERAL_API_KEY = os.getenv("LITERAL_API_KEY")
11
  LITERAL_API_URL = os.getenv("LITERAL_API_URL")
12
 
13
  OAUTH_GOOGLE_CLIENT_ID = os.getenv("OAUTH_GOOGLE_CLIENT_ID")
@@ -18,3 +18,5 @@ opening_message = f"Hey, What Can I Help You With?\n\nYou can me ask me question
18
  # Model Paths
19
 
20
  LLAMA_PATH = "../storage/models/tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf"
 
 
 
7
 
8
  OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
9
  HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
10
+ LITERAL_API_KEY_LOGGING = os.getenv("LITERAL_API_KEY_LOGGING")
11
  LITERAL_API_URL = os.getenv("LITERAL_API_URL")
12
 
13
  OAUTH_GOOGLE_CLIENT_ID = os.getenv("OAUTH_GOOGLE_CLIENT_ID")
 
18
  # Model Paths
19
 
20
  LLAMA_PATH = "../storage/models/tinyllama-1.1b-chat-v1.0.Q5_K_M.gguf"
21
+
22
+ RETRIEVER_HF_PATHS = {"RAGatouille": "XThomasBU/Colbert_Index"}
code/modules/vectorstore/store_manager.py CHANGED
@@ -3,6 +3,7 @@ from modules.vectorstore.helpers import *
3
  from modules.dataloader.webpage_crawler import WebpageCrawler
4
  from modules.dataloader.data_loader import DataLoader
5
  from modules.dataloader.helpers import *
 
6
  from modules.vectorstore.embedding_model_loader import EmbeddingModelLoader
7
  import logging
8
  import os
@@ -135,7 +136,13 @@ class VectorStoreManager:
135
  self.embedding_model = self.create_embedding_model()
136
  else:
137
  self.embedding_model = None
138
- self.loaded_vector_db = self.vector_db._load_database(self.embedding_model)
 
 
 
 
 
 
139
  end_time = time.time() # End time for loading database
140
  self.logger.info(
141
  f"Time taken to load database {self.config['vectorstore']['db_option']} from Hugging Face: {end_time - start_time} seconds"
@@ -143,9 +150,9 @@ class VectorStoreManager:
143
  self.logger.info("Loaded database")
144
  return self.loaded_vector_db
145
 
146
- def load_from_HF(self):
147
  start_time = time.time() # Start time for loading database
148
- self.vector_db._load_from_HF()
149
  end_time = time.time()
150
  self.logger.info(
151
  f"Time taken to Download database {self.config['vectorstore']['db_option']} from Hugging Face: {end_time - start_time} seconds"
@@ -164,8 +171,14 @@ if __name__ == "__main__":
164
  print(config)
165
  print(f"Trying to create database with config: {config}")
166
  vector_db = VectorStoreManager(config)
167
- if config["vectorstore"]["load_from_HF"] and "HF_path" in config["vectorstore"]:
168
- vector_db.load_from_HF()
 
 
 
 
 
 
169
  else:
170
  vector_db.create_database()
171
  print("Created database")
 
3
  from modules.dataloader.webpage_crawler import WebpageCrawler
4
  from modules.dataloader.data_loader import DataLoader
5
  from modules.dataloader.helpers import *
6
+ from modules.config.constants import RETRIEVER_HF_PATHS
7
  from modules.vectorstore.embedding_model_loader import EmbeddingModelLoader
8
  import logging
9
  import os
 
136
  self.embedding_model = self.create_embedding_model()
137
  else:
138
  self.embedding_model = None
139
+ try:
140
+ self.loaded_vector_db = self.vector_db._load_database(self.embedding_model)
141
+ except Exception as e:
142
+ raise ValueError(f"Error loading database, check if it exists. if not run python -m modules.vectorstore.store_manager / Resteart the HF Space: {e}")
143
+ # print(f"Creating database")
144
+ # self.create_database()
145
+ # self.loaded_vector_db = self.vector_db._load_database(self.embedding_model)
146
  end_time = time.time() # End time for loading database
147
  self.logger.info(
148
  f"Time taken to load database {self.config['vectorstore']['db_option']} from Hugging Face: {end_time - start_time} seconds"
 
150
  self.logger.info("Loaded database")
151
  return self.loaded_vector_db
152
 
153
+ def load_from_HF(self, HF_PATH):
154
  start_time = time.time() # Start time for loading database
155
+ self.vector_db._load_from_HF(HF_PATH)
156
  end_time = time.time()
157
  self.logger.info(
158
  f"Time taken to Download database {self.config['vectorstore']['db_option']} from Hugging Face: {end_time - start_time} seconds"
 
171
  print(config)
172
  print(f"Trying to create database with config: {config}")
173
  vector_db = VectorStoreManager(config)
174
+ if config["vectorstore"]["load_from_HF"]:
175
+ if config["vectorstore"]["db_option"] in RETRIEVER_HF_PATHS:
176
+ vector_db.load_from_HF(HF_PATH = RETRIEVER_HF_PATHS[config["vectorstore"]["db_option"]])
177
+ else:
178
+ # print(f"HF_PATH not available for {config['vectorstore']['db_option']}")
179
+ # print("Creating database")
180
+ # vector_db.create_database()
181
+ raise ValueError(f"HF_PATH not available for {config['vectorstore']['db_option']}")
182
  else:
183
  vector_db.create_database()
184
  print("Created database")
code/modules/vectorstore/vectorstore.py CHANGED
@@ -53,11 +53,11 @@ class VectorStore:
53
  else:
54
  return self.vectorstore.load_database(embedding_model)
55
 
56
- def _load_from_HF(self):
57
  # Download the snapshot from Hugging Face Hub
58
  # Note: Download goes to the cache directory
59
  snapshot_path = snapshot_download(
60
- repo_id=self.config["vectorstore"]["HF_path"],
61
  repo_type="dataset",
62
  force_download=True,
63
  )
 
53
  else:
54
  return self.vectorstore.load_database(embedding_model)
55
 
56
+ def _load_from_HF(self, HF_PATH):
57
  # Download the snapshot from Hugging Face Hub
58
  # Note: Download goes to the cache directory
59
  snapshot_path = snapshot_download(
60
+ repo_id=HF_PATH,
61
  repo_type="dataset",
62
  force_download=True,
63
  )
code/public/test.css CHANGED
@@ -31,3 +31,13 @@ a[href*='https://github.com/Chainlit/chainlit'] {
31
  .MuiAvatar-root.MuiAvatar-circular.css-v72an7 .MuiAvatar-img.css-1hy9t21 {
32
  display: none;
33
  }
 
 
 
 
 
 
 
 
 
 
 
31
  .MuiAvatar-root.MuiAvatar-circular.css-v72an7 .MuiAvatar-img.css-1hy9t21 {
32
  display: none;
33
  }
34
+
35
+ /* Hide the new chat button
36
+ #new-chat-button {
37
+ display: none;
38
+ } */
39
+
40
+ /* Hide the open sidebar button
41
+ #open-sidebar-button {
42
+ display: none;
43
+ } */