|
|
|
|
|
from typing import Dict, List, Optional, Tuple |
|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import umap |
|
from langchain_core.prompts.chat import ChatPromptTemplate |
|
from langchain_core.output_parsers import StrOutputParser |
|
from sklearn.mixture import GaussianMixture |
|
from langchain_community.chat_models import ChatOpenAI |
|
from langchain_community.vectorstores import FAISS |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from modules.vectorstore.base import VectorStoreBase |
|
|
|
RANDOM_SEED = 42 |
|
|
|
|
|
class FAISS(FAISS): |
|
"""To add length property to FAISS class""" |
|
|
|
def __len__(self): |
|
return self.index.ntotal |
|
|
|
|
|
class RAPTORVectoreStore(VectorStoreBase): |
|
def __init__(self, config, documents=[], text_splitter=None, embedding_model=None): |
|
self.documents = documents |
|
self.config = config |
|
self.text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder( |
|
chunk_size=self.config["splitter_options"]["chunk_size"], |
|
chunk_overlap=self.config["splitter_options"]["chunk_overlap"], |
|
separators=self.config["splitter_options"]["chunk_separators"], |
|
disallowed_special=(), |
|
) |
|
self.embd = embedding_model |
|
self.model = ChatOpenAI( |
|
model="gpt-3.5-turbo", |
|
) |
|
|
|
def concat_documents(self, documents): |
|
d_sorted = sorted(documents, key=lambda x: x.metadata["source"]) |
|
d_reversed = list(reversed(d_sorted)) |
|
concatenated_content = "\n\n\n --- \n\n\n".join( |
|
[doc.page_content for doc in d_reversed] |
|
) |
|
return concatenated_content |
|
|
|
def split_documents(self, documents): |
|
concatenated_content = self.concat_documents(documents) |
|
texts_split = self.text_splitter.split_text(concatenated_content) |
|
return texts_split |
|
|
|
def add_documents(self, documents): |
|
self.documents.extend(documents) |
|
|
|
def global_cluster_embeddings( |
|
self, |
|
embeddings: np.ndarray, |
|
dim: int, |
|
n_neighbors: Optional[int] = None, |
|
metric: str = "cosine", |
|
) -> np.ndarray: |
|
""" |
|
Perform global dimensionality reduction on the embeddings using UMAP. |
|
|
|
Parameters: |
|
- embeddings: The input embeddings as a numpy array. |
|
- dim: The target dimensionality for the reduced space. |
|
- n_neighbors: Optional; the number of neighbors to consider for each point. |
|
If not provided, it defaults to the square root of the number of embeddings. |
|
- metric: The distance metric to use for UMAP. |
|
|
|
Returns: |
|
- A numpy array of the embeddings reduced to the specified dimensionality. |
|
""" |
|
if n_neighbors is None: |
|
n_neighbors = int((len(embeddings) - 1) ** 0.5) |
|
return umap.UMAP( |
|
n_neighbors=n_neighbors, n_components=dim, metric=metric |
|
).fit_transform(embeddings) |
|
|
|
def local_cluster_embeddings( |
|
self, |
|
embeddings: np.ndarray, |
|
dim: int, |
|
num_neighbors: int = 10, |
|
metric: str = "cosine", |
|
) -> np.ndarray: |
|
""" |
|
Perform local dimensionality reduction on the embeddings using UMAP, typically after global clustering. |
|
|
|
Parameters: |
|
- embeddings: The input embeddings as a numpy array. |
|
- dim: The target dimensionality for the reduced space. |
|
- num_neighbors: The number of neighbors to consider for each point. |
|
- metric: The distance metric to use for UMAP. |
|
|
|
Returns: |
|
- A numpy array of the embeddings reduced to the specified dimensionality. |
|
""" |
|
return umap.UMAP( |
|
n_neighbors=num_neighbors, n_components=dim, metric=metric |
|
).fit_transform(embeddings) |
|
|
|
def get_optimal_clusters( |
|
self, |
|
embeddings: np.ndarray, |
|
max_clusters: int = 50, |
|
random_state: int = RANDOM_SEED, |
|
) -> int: |
|
""" |
|
Determine the optimal number of clusters using the Bayesian Information Criterion (BIC) with a Gaussian Mixture Model. |
|
|
|
Parameters: |
|
- embeddings: The input embeddings as a numpy array. |
|
- max_clusters: The maximum number of clusters to consider. |
|
- random_state: Seed for reproducibility. |
|
|
|
Returns: |
|
- An integer representing the optimal number of clusters found. |
|
""" |
|
max_clusters = min(max_clusters, len(embeddings)) |
|
n_clusters = np.arange(1, max_clusters) |
|
bics = [] |
|
for n in n_clusters: |
|
gm = GaussianMixture(n_components=n, random_state=random_state) |
|
gm.fit(embeddings) |
|
bics.append(gm.bic(embeddings)) |
|
return n_clusters[np.argmin(bics)] |
|
|
|
def GMM_cluster( |
|
self, embeddings: np.ndarray, threshold: float, random_state: int = 0 |
|
): |
|
""" |
|
Cluster embeddings using a Gaussian Mixture Model (GMM) based on a probability threshold. |
|
|
|
Parameters: |
|
- embeddings: The input embeddings as a numpy array. |
|
- threshold: The probability threshold for assigning an embedding to a cluster. |
|
- random_state: Seed for reproducibility. |
|
|
|
Returns: |
|
- A tuple containing the cluster labels and the number of clusters determined. |
|
""" |
|
n_clusters = self.get_optimal_clusters(embeddings) |
|
gm = GaussianMixture(n_components=n_clusters, random_state=random_state) |
|
gm.fit(embeddings) |
|
probs = gm.predict_proba(embeddings) |
|
labels = [np.where(prob > threshold)[0] for prob in probs] |
|
return labels, n_clusters |
|
|
|
def perform_clustering( |
|
self, |
|
embeddings: np.ndarray, |
|
dim: int, |
|
threshold: float, |
|
) -> List[np.ndarray]: |
|
""" |
|
Perform clustering on the embeddings by first reducing their dimensionality globally, then clustering |
|
using a Gaussian Mixture Model, and finally performing local clustering within each global cluster. |
|
|
|
Parameters: |
|
- embeddings: The input embeddings as a numpy array. |
|
- dim: The target dimensionality for UMAP reduction. |
|
- threshold: The probability threshold for assigning an embedding to a cluster in GMM. |
|
|
|
Returns: |
|
- A list of numpy arrays, where each array contains the cluster IDs for each embedding. |
|
""" |
|
if len(embeddings) <= dim + 1: |
|
|
|
return [np.array([0]) for _ in range(len(embeddings))] |
|
|
|
|
|
reduced_embeddings_global = self.global_cluster_embeddings(embeddings, dim) |
|
|
|
global_clusters, n_global_clusters = self.GMM_cluster( |
|
reduced_embeddings_global, threshold |
|
) |
|
|
|
all_local_clusters = [np.array([]) for _ in range(len(embeddings))] |
|
total_clusters = 0 |
|
|
|
|
|
for i in range(n_global_clusters): |
|
|
|
global_cluster_embeddings_ = embeddings[ |
|
np.array([i in gc for gc in global_clusters]) |
|
] |
|
|
|
if len(global_cluster_embeddings_) == 0: |
|
continue |
|
if len(global_cluster_embeddings_) <= dim + 1: |
|
|
|
local_clusters = [np.array([0]) for _ in global_cluster_embeddings_] |
|
n_local_clusters = 1 |
|
else: |
|
|
|
reduced_embeddings_local = self.local_cluster_embeddings( |
|
global_cluster_embeddings_, dim |
|
) |
|
local_clusters, n_local_clusters = self.GMM_cluster( |
|
reduced_embeddings_local, threshold |
|
) |
|
|
|
|
|
for j in range(n_local_clusters): |
|
local_cluster_embeddings_ = global_cluster_embeddings_[ |
|
np.array([j in lc for lc in local_clusters]) |
|
] |
|
indices = np.where( |
|
(embeddings == local_cluster_embeddings_[:, None]).all(-1) |
|
)[1] |
|
for idx in indices: |
|
all_local_clusters[idx] = np.append( |
|
all_local_clusters[idx], j + total_clusters |
|
) |
|
|
|
total_clusters += n_local_clusters |
|
|
|
return all_local_clusters |
|
|
|
def embed(self, texts): |
|
""" |
|
Generate embeddings for a list of text documents. |
|
|
|
This function assumes the existence of an `embd` object with a method `embed_documents` |
|
that takes a list of texts and returns their embeddings. |
|
|
|
Parameters: |
|
- texts: List[str], a list of text documents to be embedded. |
|
|
|
Returns: |
|
- numpy.ndarray: An array of embeddings for the given text documents. |
|
""" |
|
text_embeddings = self.embd.embed_documents(texts) |
|
text_embeddings_np = np.array(text_embeddings) |
|
return text_embeddings_np |
|
|
|
def embed_cluster_texts(self, texts): |
|
""" |
|
Embeds a list of texts and clusters them, returning a DataFrame with texts, their embeddings, and cluster labels. |
|
|
|
This function combines embedding generation and clustering into a single step. It assumes the existence |
|
of a previously defined `perform_clustering` function that performs clustering on the embeddings. |
|
|
|
Parameters: |
|
- texts: List[str], a list of text documents to be processed. |
|
|
|
Returns: |
|
- pandas.DataFrame: A DataFrame containing the original texts, their embeddings, and the assigned cluster labels. |
|
""" |
|
text_embeddings_np = self.embed(texts) |
|
cluster_labels = self.perform_clustering( |
|
text_embeddings_np, 10, 0.1 |
|
) |
|
df = pd.DataFrame() |
|
df["text"] = texts |
|
df["embd"] = list( |
|
text_embeddings_np |
|
) |
|
df["cluster"] = cluster_labels |
|
return df |
|
|
|
def fmt_txt(self, df: pd.DataFrame) -> str: |
|
""" |
|
Formats the text documents in a DataFrame into a single string. |
|
|
|
Parameters: |
|
- df: DataFrame containing the 'text' column with text documents to format. |
|
|
|
Returns: |
|
- A single string where all text documents are joined by a specific delimiter. |
|
""" |
|
unique_txt = df["text"].tolist() |
|
return "--- --- \n --- --- ".join(unique_txt) |
|
|
|
def embed_cluster_summarize_texts( |
|
self, texts: List[str], level: int |
|
) -> Tuple[pd.DataFrame, pd.DataFrame]: |
|
""" |
|
Embeds, clusters, and summarizes a list of texts. This function first generates embeddings for the texts, |
|
clusters them based on similarity, expands the cluster assignments for easier processing, and then summarizes |
|
the content within each cluster. |
|
|
|
Parameters: |
|
- texts: A list of text documents to be processed. |
|
- level: An integer parameter that could define the depth or detail of processing. |
|
|
|
Returns: |
|
- Tuple containing two DataFrames: |
|
1. The first DataFrame (`df_clusters`) includes the original texts, their embeddings, and cluster assignments. |
|
2. The second DataFrame (`df_summary`) contains summaries for each cluster, the specified level of detail, |
|
and the cluster identifiers. |
|
""" |
|
|
|
|
|
df_clusters = self.embed_cluster_texts(texts) |
|
|
|
|
|
expanded_list = [] |
|
|
|
|
|
for index, row in df_clusters.iterrows(): |
|
for cluster in row["cluster"]: |
|
expanded_list.append( |
|
{"text": row["text"], "embd": row["embd"], "cluster": cluster} |
|
) |
|
|
|
|
|
expanded_df = pd.DataFrame(expanded_list) |
|
|
|
|
|
all_clusters = expanded_df["cluster"].unique() |
|
|
|
print(f"--Generated {len(all_clusters)} clusters--") |
|
|
|
|
|
template = """Here is content from the course DS598: Deep Learning for Data Science. |
|
The content may be form webapge about the course, or lecture content, or any other relevant information. |
|
If the content is in bullet points (from pdf lectre slides), you can summarize the bullet points. |
|
Give a detailed summary of the content below. |
|
Documentation: |
|
{context} |
|
""" |
|
prompt = ChatPromptTemplate.from_template(template) |
|
chain = prompt | self.model | StrOutputParser() |
|
|
|
|
|
summaries = [] |
|
for i in all_clusters: |
|
df_cluster = expanded_df[expanded_df["cluster"] == i] |
|
formatted_txt = self.fmt_txt(df_cluster) |
|
summaries.append(chain.invoke({"context": formatted_txt})) |
|
|
|
|
|
df_summary = pd.DataFrame( |
|
{ |
|
"summaries": summaries, |
|
"level": [level] * len(summaries), |
|
"cluster": list(all_clusters), |
|
} |
|
) |
|
|
|
return df_clusters, df_summary |
|
|
|
def recursive_embed_cluster_summarize( |
|
self, texts: List[str], level: int = 1, n_levels: int = 3 |
|
) -> Dict[int, Tuple[pd.DataFrame, pd.DataFrame]]: |
|
""" |
|
Recursively embeds, clusters, and summarizes texts up to a specified level or until |
|
the number of unique clusters becomes 1, storing the results at each level. |
|
|
|
Parameters: |
|
- texts: List[str], texts to be processed. |
|
- level: int, current recursion level (starts at 1). |
|
- n_levels: int, maximum depth of recursion. |
|
|
|
Returns: |
|
- Dict[int, Tuple[pd.DataFrame, pd.DataFrame]], a dictionary where keys are the recursion |
|
levels and values are tuples containing the clusters DataFrame and summaries DataFrame at that level. |
|
""" |
|
results = {} |
|
|
|
|
|
df_clusters, df_summary = self.embed_cluster_summarize_texts(texts, level) |
|
|
|
|
|
results[level] = (df_clusters, df_summary) |
|
|
|
|
|
unique_clusters = df_summary["cluster"].nunique() |
|
if level < n_levels and unique_clusters > 1: |
|
|
|
new_texts = df_summary["summaries"].tolist() |
|
next_level_results = self.recursive_embed_cluster_summarize( |
|
new_texts, level + 1, n_levels |
|
) |
|
|
|
|
|
results.update(next_level_results) |
|
|
|
return results |
|
|
|
def get_vector_db(self): |
|
""" |
|
Generate a retriever object from a list of documents. |
|
|
|
Parameters: |
|
- documents: List of document objects. |
|
|
|
Returns: |
|
- A retriever object. |
|
""" |
|
leaf_texts = self.split_documents(self.documents) |
|
results = self.recursive_embed_cluster_summarize( |
|
leaf_texts, level=1, n_levels=10 |
|
) |
|
|
|
all_texts = leaf_texts.copy() |
|
|
|
for level in sorted(results.keys()): |
|
|
|
summaries = results[level][1]["summaries"].tolist() |
|
|
|
all_texts.extend(summaries) |
|
|
|
|
|
vectorstore = FAISS.from_texts(texts=all_texts, embedding=self.embd) |
|
return vectorstore |
|
|
|
def create_database(self, documents, embedding_model): |
|
self.documents = documents |
|
self.embd = embedding_model |
|
self.vectorstore = self.get_vector_db() |
|
self.vectorstore.save_local( |
|
os.path.join( |
|
self.config["vectorstore"]["db_path"], |
|
"db_" |
|
+ self.config["vectorstore"]["db_option"] |
|
+ "_" |
|
+ self.config["vectorstore"]["model"], |
|
) |
|
) |
|
|
|
def load_database(self, embedding_model): |
|
self.vectorstore = FAISS.load_local( |
|
os.path.join( |
|
self.config["vectorstore"]["db_path"], |
|
"db_" |
|
+ self.config["vectorstore"]["db_option"] |
|
+ "_" |
|
+ self.config["vectorstore"]["model"], |
|
), |
|
embedding_model, |
|
allow_dangerous_deserialization=True, |
|
) |
|
return self.vectorstore |
|
|
|
def as_retriever(self): |
|
return self.vectorstore.as_retriever() |
|
|