File size: 3,594 Bytes
89c1950 6161dc5 89c1950 7a233a3 b9be4de 7a233a3 b9be4de 7a233a3 db6b619 7a233a3 849b2ae 1e2550f 7a233a3 db6b619 7a233a3 db6b619 9a7da99 7a233a3 db6b619 9a7da99 7a233a3 db6b619 849b2ae 7a233a3 f1da7ee 7f989d6 da88571 7f989d6 1e2550f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
---
title: AI Class Tutor
description: An LLM based AI class tutor with RAG on DL4DS course
emoji: πΆ
colorFrom: red
colorTo: green
sdk: docker
app_port: 7860
---
# DL4DS Tutor π
Check out the configuration reference at [Hugging Face Spaces Config Reference](https://huggingface.co/docs/hub/spaces-config-reference).
You can find an implementation of the Tutor at [DL4DS Tutor on Hugging Face](https://dl4ds-dl4ds-tutor.hf.space/), which is hosted on Hugging Face [here](https://huggingface.co/spaces/dl4ds/dl4ds_tutor).
## Running Locally
Please view `docs/setup.md` for more information on setting up the project.
1. **Clone the Repository**
```bash
git clone https://github.com/DL4DS/dl4ds_tutor
```
2. **Put your data under the `storage/data` directory**
- Add URLs in the `urls.txt` file.
- Add other PDF files in the `storage/data` directory.
3. **To test Data Loading (Optional)**
```bash
cd code
python -m modules.dataloader.data_loader
```
4. **Create the Vector Database**
```bash
cd code
python -m modules.vectorstore.store_manager
```
- Note: You need to run the above command when you add new data to the `storage/data` directory, or if the `storage/data/urls.txt` file is updated.
5. **Run the Chainlit App**
```bash
chainlit run main.py
```
See the [docs](https://github.com/DL4DS/dl4ds_tutor/tree/main/docs) for more information.
## File Structure
```plaintext
code/
βββ modules
β βββ chat # Contains the chatbot implementation
β βββ chat_processor # Contains the implementation to process and log the conversations
β βββ config # Contains the configuration files
β βββ dataloader # Contains the implementation to load the data from the storage directory
β βββ retriever # Contains the implementation to create the retriever
β βββ vectorstore # Contains the implementation to create the vector database
βββ public
β βββ logo_dark.png # Dark theme logo
β βββ logo_light.png # Light theme logo
β βββ test.css # Custom CSS file
βββ main.py
docs/ # Contains the documentation to the codebase and methods used
storage/
βββ data # Store files and URLs here
βββ logs # Logs directory, includes logs on vector DB creation, tutor logs, and chunks logged in JSON files
βββ models # Local LLMs are loaded from here
vectorstores/ # Stores the created vector databases
.env # This needs to be created, store the API keys here
```
- `code/modules/vectorstore/vectorstore.py`: Instantiates the `VectorStore` class to create the vector database.
- `code/modules/vectorstore/store_manager.py`: Instantiates the `VectorStoreManager:` class to manage the vector database, and all associated methods.
- `code/modules/retriever/retriever.py`: Instantiates the `Retriever` class to create the retriever.
## Docker
The HuggingFace Space is built using the `Dockerfile` in the repository. To run it locally, use the `Dockerfile.dev` file.
```bash
docker build --tag dev -f Dockerfile.dev .
docker run -it --rm -p 8000:8000 dev
```
## Contributing
Please create an issue if you have any suggestions or improvements, and start working on it by creating a branch and by making a pull request to the main branch.
Please view `docs/contribute.md` for more information on contributing. |