Spaces:
Running
Running
import easyocr | |
from gradio_client import Client, handle_file | |
import pandas as pd | |
import gradio as gr | |
clientImg = Client("dj-dawgs-ipd/IPD-Image-ViT-Finetune") | |
clientEngText = Client("dj-dawgs-ipd/IPD-Text-English-Finetune") | |
clientHingText = Client("dj-dawgs-ipd/IPD-Text-Hinglish") | |
profanity_df = pd.read_csv('Hinglish_Profanity_List.csv' , encoding = 'utf-8') | |
profanity_hn = profanity_df['profanity_hn'] | |
def extract_text(image): | |
reader = easyocr.Reader(['en']) | |
data = [result[1] for result in reader.readtext(image)] | |
return ' '.join([l for l in data]) | |
def predict(image): | |
imgResult = clientImg.predict( | |
image=handle_file(image), | |
api_name="/predict" | |
) | |
label , confidence = imgResult[0]['label'] , float(imgResult[1]['label']) | |
if (label == 'finger_gun_to_the_head' and confidence > 0.98) or (label != 'finger_gun_to_the_head' and confidence > 0.95): | |
return { | |
"prediction" : "hate", | |
"language" : None, | |
"label" : label, | |
"confidence" : confidence, | |
"hate_text" : None | |
} | |
else: | |
ocr_text = extract_text(image).lower() | |
engResult = clientEngText.predict( | |
text=ocr_text[:200], | |
api_name="/predict" | |
) | |
hingResult = clientHingText.predict( | |
text=ocr_text[:200], | |
api_name="/predict" | |
) | |
profanityFound = [word for word in ocr_text.split() if word in profanity_hn] | |
if len(profanityFound) > 0: | |
return { | |
"prediction" : "hate", | |
"language" : "Hindi", | |
"label" : "Profanity Found", | |
"confidence" : None, | |
"hate_text" : profanityFound | |
} | |
elif engResult[0] != "NEITHER" and engResult[1] > 0.5: | |
return { | |
"prediction" : "hate", | |
"language" : "English", | |
"label" : engResult[0], | |
"confidence" : engResult[1], | |
"hate_text" : ocr_text[:200] | |
} | |
elif hingResult[0] != "NAG" and hingResult[1] > 0.5: | |
return { | |
"prediction" : "hate", | |
"language" : "Hinglish", | |
"label" : hingResult[0], | |
"confidence" : hingResult[1], | |
"hate_text" : ocr_text[:200] | |
} | |
else: | |
return { | |
"prediction" : "not_hate", | |
"language" : None, | |
"label" : "No hate found, yay!", | |
"confidence" : None, | |
"hate_text" : None | |
} | |
iface = gr.Interface(fn=predict, | |
inputs = gr.Image(type='filepath'), | |
outputs=gr.JSON(), | |
title = "Hate Speech Detection in Image", | |
description = "Detect hateful symbols or text in Image" | |
) | |
if __name__ == "__main__": | |
iface.launch(show_error=True) |