File size: 4,583 Bytes
9457143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabac1b
 
 
 
9457143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dabac1b
 
9457143
 
 
 
 
 
 
 
 
 
 
dabac1b
 
9457143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from pytorch_lightning.loggers import WandbLogger
import diffusion
import torch
import wandb
import pytorch_lightning as pl
import argparse
import os

torch.multiprocessing.set_sharing_strategy('file_system')


def main():
    # PARSERs
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '--dataset', '-d', type=str, default='mnist',
        help='choose dataset'
    )
    parser.add_argument(
        '--data_dir', '-dd', type=str, default='./data/',
        help='model name'
    )
    parser.add_argument(
        '--mode', type=str, default='ddim',
        help='sampling mode'
    )
    parser.add_argument(
        '--max_epochs', '-me', type=int, default=200,
        help='max epoch'
    )
    parser.add_argument(
        '--batch_size', '-bs', type=int, default=32,
        help='batch size'
    )
    parser.add_argument(
        '--train_ratio', '-tr', type=float, default=0.99,
        help='batch size'
    )
    parser.add_argument(
        '--timesteps', '-ts', type=int, default=1000,
        help='max timesteps diffusion'
    )
    parser.add_argument(
        '--max_batch_size', '-mbs', type=int, default=32,
        help='max batch size'
    )
    parser.add_argument(
        '--lr', '-l', type=float, default=1e-4,
        help='learning rate'
    )
    parser.add_argument(
        '--num_workers', '-nw', type=int, default=4,
        help='number of workers'
    )
    parser.add_argument(
        '--seed', '-s', type=int, default=42,
        help='seed'
    )
    parser.add_argument(
        '--name', '-n', type=str, default=None,
        help='name of the experiment'
    )
    parser.add_argument(
        '--pbar', action='store_true',
        help='progress bar'
    )
    parser.add_argument(
        '--precision', '-p', type=str, default='32',
        help='numerical precision'
    )
    parser.add_argument(
        '--sample_per_epochs', '-spe', type=int, default=25,
        help='sample every n epochs'
    )
    parser.add_argument(
        '--n_samples', '-ns', type=int, default=4,
        help='number of workers'
    )
    parser.add_argument(
        '--monitor', '-m', type=str, default='val_loss',
        help='callbacks monitor'
    )
    parser.add_argument(
        '--wandb', '-wk', type=str, default=None,
        help='wandb API key'
    )

    args = parser.parse_args()

    # SEED
    pl.seed_everything(args.seed, workers=True)

    # WANDB (OPTIONAL)
    if args.wandb is not None:
        wandb.login(key=args.wandb)  # API KEY
        name = args.name or f"diffusion-{args.max_epochs}-{args.batch_size}-{args.lr}"
        logger = WandbLogger(
            project="diffusion-model",
            name=name,
            log_model=False
        )
    else:
        logger = None

    # DATAMODULE
    if args.dataset == "mnist":
        DATAMODULE = diffusion.MNISTDataModule
        img_dim = 32
        num_classes = 10
    elif args.dataset == "cifar10":
        DATAMODULE = diffusion.CIFAR10DataModule
        img_dim = 32
        num_classes = 10
    elif args.dataset == "celeba":
        DATAMODULE = diffusion.CelebADataModule
        img_dim = 64
        num_classes = None

    datamodule = DATAMODULE(
        data_dir=args.data_dir,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        seed=args.seed,
        train_ratio=args.train_ratio,
        img_dim=img_dim
    )

    # MODEL
    in_channels = 1 if args.dataset == "mnist" else 3
    model = diffusion.DiffusionModel(
        lr=args.lr,
        in_channels=in_channels,
        sample_per_epochs=args.sample_per_epochs,
        max_timesteps=args.timesteps,
        dim=img_dim,
        num_classes=num_classes,
        n_samples=args.n_samples,
        mode=args.mode
    )

    # CALLBACK
    root_path = os.path.join(os.getcwd(), "checkpoints")
    callback = diffusion.ModelCallback(
        root_path=root_path,
        ckpt_monitor=args.monitor
    )

    # STRATEGY
    strategy = 'ddp_find_unused_parameters_true' if torch.cuda.is_available() else 'auto'

    # TRAINER
    trainer = pl.Trainer(
        default_root_dir=root_path,
        logger=logger,
        callbacks=callback.get_callback(),
        gradient_clip_val=0.5,
        max_epochs=args.max_epochs,
        enable_progress_bar=args.pbar,
        deterministic=False,
        precision=args.precision,
        strategy=strategy,
        accumulate_grad_batches=max(int(args.max_batch_size / args.batch_size), 1)
    )

    # FIT MODEL
    trainer.fit(model=model, datamodule=datamodule)


if __name__ == '__main__':
    main()