NCJ commited on
Commit
a5555ed
·
verified ·
1 Parent(s): 8ef729c

add some more prov imgs

Browse files
app.py CHANGED
@@ -13,7 +13,7 @@ from demo.rm_bg import rm_bg
13
 
14
  with gr.Blocks(title="DiLightNet Demo") as demo:
15
  gr.Markdown("""# DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
16
- ## A demo for generating images under point/environmantal lighting using DiLightNet. For full usage (video generation & arbitary lighting condition), please refer to our [GitHub repository](https://github.com/iamNCJ/DiLightNet)""")
17
 
18
  with gr.Row():
19
  # 1. Reference Image Input / Generation
@@ -34,7 +34,7 @@ with gr.Blocks(title="DiLightNet Demo") as demo:
34
  gr.Examples(
35
  examples=[os.path.join("examples/provisional_img", i) for i in os.listdir("examples/provisional_img")],
36
  inputs=[input_image],
37
- examples_per_page = 20,
38
  )
39
 
40
  # 2. Background Removal
@@ -81,7 +81,7 @@ with gr.Blocks(title="DiLightNet Demo") as demo:
81
  env_examples = gr.Examples(
82
  examples=[[os.path.join("examples/env_map_preview", i), os.path.join("examples/env_map", i).replace("png", "exr")] for i in os.listdir("examples/env_map_preview")],
83
  inputs=[env_map_preview, env_map_path],
84
- examples_per_page = 20,
85
  )
86
  render_btn_env = gr.Button(value="Render Hints")
87
 
@@ -164,13 +164,15 @@ with gr.Blocks(title="DiLightNet Demo") as demo:
164
  seed=int(relighting_seed),
165
  cfg=relighting_cfg
166
  )
167
- relit_img = imageio.v3.imread(res_folder_path + '/relighting00.png')
168
  if do_env_inpainting:
169
  bg = imageio.v3.imread(res_folder_path + f'/bg00.png') / 255.
170
- relit_img = relit_img / 255.
171
- mask_for_bg = imageio.v3.imread(res_folder_path + '/hint00_diffuse.png')[..., -1:] / 255.
172
- relit_img = relit_img * mask_for_bg + bg * (1. - mask_for_bg)
173
- relit_img = (relit_img * 255).clip(0, 255).astype(np.uint8)
 
 
174
  return relit_img
175
 
176
  relighting_generate_btn.click(fn=gen_relighting_image,
 
13
 
14
  with gr.Blocks(title="DiLightNet Demo") as demo:
15
  gr.Markdown("""# DiLightNet: Fine-grained Lighting Control for Diffusion-based Image Generation
16
+ ## A demo for generating images under point/environmantal lighting using DiLightNet. For full usage (video generation & arbitary lighting condition & depth-conditioned generation) and more examples, please refer to our [GitHub repository](https://github.com/iamNCJ/DiLightNet)""")
17
 
18
  with gr.Row():
19
  # 1. Reference Image Input / Generation
 
34
  gr.Examples(
35
  examples=[os.path.join("examples/provisional_img", i) for i in os.listdir("examples/provisional_img")],
36
  inputs=[input_image],
37
+ examples_per_page=8,
38
  )
39
 
40
  # 2. Background Removal
 
81
  env_examples = gr.Examples(
82
  examples=[[os.path.join("examples/env_map_preview", i), os.path.join("examples/env_map", i).replace("png", "exr")] for i in os.listdir("examples/env_map_preview")],
83
  inputs=[env_map_preview, env_map_path],
84
+ examples_per_page=20,
85
  )
86
  render_btn_env = gr.Button(value="Render Hints")
87
 
 
164
  seed=int(relighting_seed),
165
  cfg=relighting_cfg
166
  )
167
+ relit_img = imageio.v3.imread(res_folder_path + '/relighting00_0.png')
168
  if do_env_inpainting:
169
  bg = imageio.v3.imread(res_folder_path + f'/bg00.png') / 255.
170
+ else:
171
+ bg = np.zeros_like(relit_img)
172
+ relit_img = relit_img / 255.
173
+ mask_for_bg = imageio.v3.imread(res_folder_path + '/hint00_diffuse.png')[..., -1:] / 255.
174
+ relit_img = relit_img * mask_for_bg + bg * (1. - mask_for_bg)
175
+ relit_img = (relit_img * 255).clip(0, 255).astype(np.uint8)
176
  return relit_img
177
 
178
  relighting_generate_btn.click(fn=gen_relighting_image,
demo/relighting_gen.py CHANGED
@@ -1,8 +1,7 @@
1
  import imageio
2
  import numpy as np
3
- import spaces
4
  import torch
5
- from diffusers import UniPCMultistepScheduler, StableDiffusionControlNetPipeline, StableDiffusionInpaintPipeline, ConsistencyDecoderVAE
6
  from diffusers.utils import get_class_from_dynamic_module
7
 
8
  from tqdm import tqdm
@@ -22,10 +21,8 @@ controlnet = NeuralTextureControlNetModel.from_pretrained(
22
  "dilightnet/DiLightNet-submissions-300k",
23
  torch_dtype=dtype,
24
  )
25
- vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=dtype)
26
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
27
  "stabilityai/stable-diffusion-2-1",
28
- vae=vae,
29
  controlnet=controlnet,
30
  torch_dtype=dtype
31
  ).to(device)
@@ -40,7 +37,7 @@ inpainting_pipe.set_progress_bar_config(disable=True)
40
 
41
 
42
  @spaces.GPU
43
- def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed, cfg, inpaint=False):
44
  mask = mask[..., :1] / 255.
45
  for i in tqdm(range(frames)):
46
  source_image = masked_ref_img[..., :3] / 255.
@@ -55,13 +52,13 @@ def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed,
55
  images.append(image)
56
 
57
  hint = np.concatenate(images, axis=2).astype(np.float32)[None]
58
-
59
  hint = torch.from_numpy(hint).to(dtype).permute(0, 3, 1, 2).to(device)
60
- generator = torch.manual_seed(seed)
61
- image = pipe(
62
- prompt, num_inference_steps=steps, generator=generator, image=hint, num_images_per_prompt=1, guidance_scale=cfg, output_type='np',
63
- ).images[0] # [H, W, C]
64
  if inpaint:
65
  mask_image = (1. - mask)[None]
66
- image = inpainting_pipe(prompt=prompt, image=image[None], mask_image=mask_image, generator=generator, output_type='np', cfg=3.0, strength=1.0).images[0]
67
- imageio.imwrite(f'{cond_path}/relighting{i:02d}.png', (image * 255).clip(0, 255).astype(np.uint8))
 
 
1
  import imageio
2
  import numpy as np
 
3
  import torch
4
+ from diffusers import UniPCMultistepScheduler, StableDiffusionControlNetPipeline, StableDiffusionInpaintPipeline
5
  from diffusers.utils import get_class_from_dynamic_module
6
 
7
  from tqdm import tqdm
 
21
  "dilightnet/DiLightNet-submissions-300k",
22
  torch_dtype=dtype,
23
  )
 
24
  pipe = StableDiffusionControlNetPipeline.from_pretrained(
25
  "stabilityai/stable-diffusion-2-1",
 
26
  controlnet=controlnet,
27
  torch_dtype=dtype
28
  ).to(device)
 
37
 
38
 
39
  @spaces.GPU
40
+ def relighting_gen(masked_ref_img, mask, cond_path, frames, prompt, steps, seed, cfg, num_imgs_per_prompt=1, inpaint=False):
41
  mask = mask[..., :1] / 255.
42
  for i in tqdm(range(frames)):
43
  source_image = masked_ref_img[..., :3] / 255.
 
52
  images.append(image)
53
 
54
  hint = np.concatenate(images, axis=2).astype(np.float32)[None]
 
55
  hint = torch.from_numpy(hint).to(dtype).permute(0, 3, 1, 2).to(device)
56
+ generator = torch.Generator(device=device).manual_seed(seed)
57
+ images = pipe(
58
+ prompt, num_inference_steps=steps, generator=generator, image=hint, num_images_per_prompt=num_imgs_per_prompt, guidance_scale=cfg, output_type='np',
59
+ ).images # [N, H, W, C]
60
  if inpaint:
61
  mask_image = (1. - mask)[None]
62
+ images = inpainting_pipe(prompt=prompt, image=images, mask_image=mask_image, generator=generator, output_type='np', cfg=3.0, strength=1.0).images
63
+ for idx in range(num_imgs_per_prompt):
64
+ imageio.imwrite(f'{cond_path}/relighting{i:02d}_{idx}.png', (images[idx] * 255).clip(0, 255).astype(np.uint8))
demo/render_hints.py CHANGED
@@ -27,6 +27,8 @@ def render_hint_images(model_path, fov, pls, power=500., geo_smooth=True, output
27
  bpy.context.preferences.addons["cycles"].preferences.get_devices()
28
  bpy.context.scene.cycles.device = 'GPU'
29
  bpy.context.preferences.addons['cycles'].preferences.compute_device_type = 'CUDA'
 
 
30
 
31
  # Enable the alpha channel for GT mask
32
  bpy.context.scene.render.film_transparent = True
@@ -85,7 +87,7 @@ def render_hint_images(model_path, fov, pls, power=500., geo_smooth=True, output
85
  return output_folder
86
 
87
 
88
- def render_bg_images(fov, pls, output_folder: Optional[str] = None, env_map: Optional[str] = None, env_start_azi=0., resolution=512):
89
  import bpy
90
  import numpy as np
91
 
@@ -105,6 +107,13 @@ def render_bg_images(fov, pls, output_folder: Optional[str] = None, env_map: Opt
105
  bpy.context.scene.render.film_transparent = False
106
  bpy.context.scene.render.image_settings.color_mode = 'RGB'
107
 
 
 
 
 
 
 
 
108
  def render_env_bg(output_path):
109
  bpy.context.scene.view_layers["ViewLayer"].material_override = None
110
  bpy.context.scene.render.image_settings.file_format = 'PNG'
 
27
  bpy.context.preferences.addons["cycles"].preferences.get_devices()
28
  bpy.context.scene.cycles.device = 'GPU'
29
  bpy.context.preferences.addons['cycles'].preferences.compute_device_type = 'CUDA'
30
+ bpy.context.scene.render.threads = 8
31
+ bpy.context.scene.render.threads_mode = 'FIXED'
32
 
33
  # Enable the alpha channel for GT mask
34
  bpy.context.scene.render.film_transparent = True
 
87
  return output_folder
88
 
89
 
90
+ def render_bg_images(fov, pls, output_folder: Optional[str] = None, env_map: Optional[str] = None, env_start_azi=0., resolution=512, use_gpu=False):
91
  import bpy
92
  import numpy as np
93
 
 
107
  bpy.context.scene.render.film_transparent = False
108
  bpy.context.scene.render.image_settings.color_mode = 'RGB'
109
 
110
+ if use_gpu:
111
+ bpy.context.preferences.addons["cycles"].preferences.get_devices()
112
+ bpy.context.scene.cycles.device = 'GPU'
113
+ bpy.context.preferences.addons['cycles'].preferences.compute_device_type = 'CUDA'
114
+ bpy.context.scene.render.threads = 8
115
+ bpy.context.scene.render.threads_mode = 'FIXED'
116
+
117
  def render_env_bg(output_path):
118
  bpy.context.scene.view_layers["ViewLayer"].material_override = None
119
  bpy.context.scene.render.image_settings.file_format = 'PNG'
examples/provisional_img/3d-animation-character-minimal-art-toy.png ADDED

Git LFS Details

  • SHA256: 5e6022b4b5811d8221f8e20b1cfd9eee6e656557da14243151f49dd1351c6ff9
  • Pointer size: 131 Bytes
  • Size of remote file: 887 kB
examples/provisional_img/a-decorated-plaster-round-plate-with-blue-fine-silk-ribbon-around-it-0.png ADDED

Git LFS Details

  • SHA256: 2af1b2539e5688c34f5ba662af80989a54af5334da7aed0a751e260b725951d7
  • Pointer size: 132 Bytes
  • Size of remote file: 3.16 MB
examples/provisional_img/a-decorated-plaster-round-plate-with-blue-fine-silk-ribbon-around-it-1.png ADDED

Git LFS Details

  • SHA256: a9e0beda5044ff929716b7e9a4aa63d55dc55d39d797ffe97542aa698c798065
  • Pointer size: 132 Bytes
  • Size of remote file: 3.16 MB
examples/provisional_img/a-large-colorful-candle-high-quality-product-photo.png ADDED

Git LFS Details

  • SHA256: bbfc77e6bd66a856a6c1d516a2c3ad9f23e824ec9fbc6dfcd7947792e9002674
  • Pointer size: 132 Bytes
  • Size of remote file: 3.16 MB
examples/provisional_img/an-elephant-sculpted-from-plaster-and-the-elephant-nose-is-decorated-with-the-golden-texture.png ADDED

Git LFS Details

  • SHA256: d7d75875801c33972e23b47f0dcb4ce86a7b78df3a86f878e8e6899ff8be1364
  • Pointer size: 132 Bytes
  • Size of remote file: 3.16 MB
examples/provisional_img/girraffe_turtle.jpeg ADDED
examples/provisional_img/gorgeous-ornate-fountain-made-of-marble.png ADDED

Git LFS Details

  • SHA256: 0bfc9dc43da7bc0535e550e70b5a78786ec47334f2812661e90ef7173832a9ab
  • Pointer size: 131 Bytes
  • Size of remote file: 888 kB
examples/provisional_img/leather-glove-0.png ADDED

Git LFS Details

  • SHA256: b907f2b5ae7e92bfb41ba368b263a68e9e3d43a430950f606b3a8d80eeb65617
  • Pointer size: 131 Bytes
  • Size of remote file: 523 kB
examples/provisional_img/machine-dragon-robot-in-platinum-0.png ADDED

Git LFS Details

  • SHA256: 777a48a22d551bc3ce80c3247bf77114d7b596d74124cee3a26eb357eb886908
  • Pointer size: 131 Bytes
  • Size of remote file: 855 kB
examples/provisional_img/machine-dragon-robot-in-platinum-1.png ADDED

Git LFS Details

  • SHA256: 52c29bae3251733ccd58ebfabf4452a5de8f24da57826e9ac460edb0c5ee7ae2
  • Pointer size: 131 Bytes
  • Size of remote file: 799 kB
examples/provisional_img/machine-dragon-robot-in-platinum-2.png ADDED

Git LFS Details

  • SHA256: 53a19155ec3e3a2c7ccb9816c8e7465fbef39c81b79d6b2e6e9e2cdd8c919174
  • Pointer size: 131 Bytes
  • Size of remote file: 619 kB
examples/provisional_img/pottery.png ADDED

Git LFS Details

  • SHA256: d857ff5150610cd4ad605132b882bfeb71bc91857f71a7af00fe37b0a12e3a3e
  • Pointer size: 132 Bytes
  • Size of remote file: 1.29 MB
examples/provisional_img/rusty-copper-toy-frog-with-spatially-varying-materials-some-parts-are-shinning-other-parts-are-rough.png ADDED

Git LFS Details

  • SHA256: 8883cd99b164a1710e75ef98c4c2775cef8d17878f6577998241cb577debd636
  • Pointer size: 132 Bytes
  • Size of remote file: 3.16 MB
examples/provisional_img/rusty-phoenix.png ADDED

Git LFS Details

  • SHA256: 75cab46ef0fd031242bb4f7d8433282fd94b081abadf2cb5855728825b8fb361
  • Pointer size: 132 Bytes
  • Size of remote file: 3.16 MB
examples/provisional_img/starcraft-2-marine-machine-gun-0.png ADDED

Git LFS Details

  • SHA256: cdfb7c769f5bf3c28f37796f3f115f41dd0515d5de9ce0c3f9e09d0c4e98f828
  • Pointer size: 131 Bytes
  • Size of remote file: 788 kB
examples/provisional_img/steampunk-space-tank-with-delicate-details-0.png ADDED

Git LFS Details

  • SHA256: 0f09e18378653831d9f316d0641a3eb10eb44c5f3338ad0dd370c5b2a16d138e
  • Pointer size: 131 Bytes
  • Size of remote file: 880 kB
examples/provisional_img/steampunk-space-tank-with-delicate-details-1.png ADDED

Git LFS Details

  • SHA256: d17eab2095ffb55ac2fa239c669da3916e7a45783b2891f009485de09972ae98
  • Pointer size: 131 Bytes
  • Size of remote file: 934 kB
examples/provisional_img/stone-griffin.png ADDED

Git LFS Details

  • SHA256: da1fb50818a3e2d4373daac145063e231cdbc7980d03c8d43ef5e8b66f20d515
  • Pointer size: 131 Bytes
  • Size of remote file: 495 kB