Spaces:
Runtime error
Runtime error
from controlnet_aux import OpenposeDetector | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel | |
from diffusers import UniPCMultistepScheduler | |
import gradio as gr | |
import torch | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
# live conditioning | |
canvas_html = "<pose-canvas id='canvas-root' style='display:flex;max-width: 500px;margin: 0 auto;'></pose-canvas>" | |
load_js = """ | |
async () => { | |
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/pose-gradio.js" | |
fetch(url) | |
.then(res => res.text()) | |
.then(text => { | |
const script = document.createElement('script'); | |
script.type = "module" | |
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' })); | |
document.head.appendChild(script); | |
}); | |
} | |
""" | |
get_js_image = """ | |
async (image_in_img, prompt, image_file_live_opt, live_conditioning) => { | |
const canvasEl = document.getElementById("canvas-root"); | |
const data = canvasEl? canvasEl._data : null; | |
return [image_in_img, prompt, image_file_live_opt, data] | |
} | |
""" | |
# Constants | |
low_threshold = 100 | |
high_threshold = 200 | |
# Models | |
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet") | |
controlnet = ControlNetModel.from_pretrained( | |
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16 | |
) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
# This command loads the individual model components on GPU on-demand. So, we don't | |
# need to explicitly call pipe.to("cuda"). | |
pipe.enable_model_cpu_offload() | |
# xformers | |
pipe.enable_xformers_memory_efficient_attention() | |
# Generator seed, | |
generator = torch.manual_seed(0) | |
def get_pose(image): | |
return pose_model(image) | |
def generate_images(image, prompt, image_file_live_opt='file', live_conditioning=None): | |
if image is None and 'image' not in live_conditioning: | |
raise gr.Error("Please provide an image") | |
try: | |
if image_file_live_opt == 'file': | |
pose = get_pose(image) | |
elif image_file_live_opt == 'webcam': | |
base64_img = live_conditioning['image'] | |
image_data = base64.b64decode(base64_img.split(',')[1]) | |
pose = Image.open(BytesIO(image_data)).convert( | |
'RGB').resize((512, 512)) | |
output = pipe( | |
prompt, | |
pose, | |
generator=generator, | |
num_images_per_prompt=3, | |
num_inference_steps=20, | |
) | |
all_outputs = [] | |
all_outputs.append(pose) | |
for image in output.images: | |
all_outputs.append(image) | |
return all_outputs | |
except Exception as e: | |
raise gr.Error(str(e)) | |
def toggle(choice): | |
if choice == "file": | |
return gr.update(visible=True, value=None), gr.update(visible=False, value=None) | |
elif choice == "webcam": | |
return gr.update(visible=False, value=None), gr.update(visible=True, value=canvas_html) | |
with gr.Blocks() as blocks: | |
gr.Markdown(""" | |
## Generate controlled outputs with ControlNet and Stable Diffusion | |
This Space uses pose estimated lines as the additional conditioning | |
[Check out our blog to see how this was done (and train your own controlnet)](https://huggingface.co/blog/train-your-controlnet) | |
""") | |
with gr.Row(): | |
live_conditioning = gr.JSON(value={}, visible=False) | |
with gr.Column(): | |
image_file_live_opt = gr.Radio(["file", "webcam"], value="file", | |
label="How would you like to upload your image?") | |
image_in_img = gr.Image(source="upload", visible=True, type="pil") | |
canvas = gr.HTML(None, elem_id="canvas_html", visible=False) | |
image_file_live_opt.change(fn=toggle, | |
inputs=[image_file_live_opt], | |
outputs=[image_in_img, canvas], | |
queue=False) | |
prompt = gr.Textbox( | |
label="Enter your prompt", | |
max_lines=1, | |
placeholder="best quality, extremely detailed", | |
) | |
run_button = gr.Button("Generate") | |
with gr.Column(): | |
gallery = gr.Gallery().style(grid=[2], height="auto") | |
run_button.click(fn=generate_images, | |
inputs=[image_in_img, prompt, | |
image_file_live_opt, live_conditioning], | |
outputs=[gallery], | |
_js=get_js_image) | |
blocks.load(None, None, None, _js=load_js) | |
gr.Examples(fn=generate_images, | |
examples=[ | |
["./yoga1.jpeg", | |
"best quality, extremely detailed"] | |
], | |
inputs=[image_in_img, prompt], | |
outputs=[gallery], | |
cache_examples=True) | |
blocks.launch(debug=True) | |