import gradio as gr import spaces import torch import os import uuid import io import numpy as np from PIL import Image import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from decord import VideoReader, cpu # ============================================================================= # InternVL 전처리/로딩 코드 (원본 예시에서 발췌) # ============================================================================= IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: # 이미지 면적 기준으로 좀 더 큰 쪽 선택 if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num ) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size ) target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) split_img = resized_img.crop(box) processed_images.append(split_img) if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(img) for img in images] pixel_values = torch.stack(pixel_values) return pixel_values def get_index(bound, fps, max_frame, first_idx=0, num_segments=32): if bound: start, end = bound[0], bound[1] else: start, end = -100000, 100000 start_idx = max(first_idx, round(start * fps)) end_idx = min(round(end * fps), max_frame) seg_size = float(end_idx - start_idx) / num_segments frame_indices = np.array([ int(start_idx + (seg_size / 2) + np.round(seg_size * idx)) for idx in range(num_segments) ]) return frame_indices def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=8): """ InternVL 예시 코드 참고: 여러 프레임을 추출하여 dynamic_preprocess 적용. 여기서는 기본적으로 num_segments=8로 설정. """ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) max_frame = len(vr) - 1 fps = float(vr.get_avg_fps()) pixel_values_list, num_patches_list = [], [] transform = build_transform(input_size=input_size) frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments) for frame_index in frame_indices: frame = vr[frame_index] img = Image.fromarray(frame.asnumpy()).convert('RGB') processed_imgs = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num) tile_values = [transform(tile) for tile in processed_imgs] tile_values = torch.stack(tile_values) num_patches_list.append(tile_values.shape[0]) pixel_values_list.append(tile_values) # 여러 프레임을 이어 붙여 최종 pixel_values 생성 pixel_values = torch.cat(pixel_values_list, dim=0) # (sum(num_patches_list), 3, H, W) return pixel_values, num_patches_list # ============================================================================= # InternVL 모델 로딩 # ============================================================================= MODEL_ID = "OpenGVLab/InternVL2_5-8B" model = AutoModel.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, use_flash_attn=True, trust_remote_code=True ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained( MODEL_ID, trust_remote_code=True, use_fast=False ) # Gradio 상단에 표시할 설명 문구 DESCRIPTION = "[InternVL2_5-8B Demo](https://github.com/OpenGVLab/InternVL) - Using the InternVL2_5-8B" image_extensions = Image.registered_extensions() video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp") def identify_and_save_blob(blob_path): """ Qwen 예제 코드와 동일: blob을 열어보고 이미지인지 영상인지 확인 후, 임시 파일로 저장하여 경로 리턴 """ try: with open(blob_path, 'rb') as file: blob_content = file.read() # Try to identify if it's an image try: Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image extension = ".png" # Default to PNG for saving media_type = "image" except (IOError, SyntaxError): # If it's not a valid image, assume it's a video extension = ".mp4" # Default to MP4 for saving media_type = "video" # Create a unique filename filename = f"temp_{uuid.uuid4()}_media{extension}" with open(filename, "wb") as f: f.write(blob_content) return filename, media_type except FileNotFoundError: raise ValueError(f"The file {blob_path} was not found.") except Exception as e: raise ValueError(f"An error occurred while processing the file: {e}") def process_file_upload(file_path): """ 파일 업로드 시 이미지/영상 미리보기 혹은 그대로 패스. """ if isinstance(file_path, str): if file_path.endswith(tuple([i for i, f in image_extensions.items()])): # 이미지를 열어서 preview로 넘김 return file_path, Image.open(file_path) elif file_path.endswith(video_extensions): # 영상은 preview를 None으로 return file_path, None else: # blob 파일인 경우 처리 try: media_path, media_type = identify_and_save_blob(file_path) if media_type == "image": return media_path, Image.open(media_path) return media_path, None except Exception as e: print(e) raise ValueError("Unsupported media type. Please upload an image or video.") return None, None @spaces.GPU def internvl_inference(media_input, text_input=None): """ Qwen 예제의 qwen_inference 대신 InternVL을 이용한 추론 함수. - 이미지/영상 파일을 InternVL에서 요구하는 pixel_values로 변환 후 model.chat() 호출하여 답변 생성. """ if isinstance(media_input, str): # If it's a filepath media_path = media_input # 미디어 종류 식별 if media_path.endswith(tuple([i for i, f in image_extensions.items()])): media_type = "image" elif media_path.endswith(video_extensions): media_type = "video" else: # blob인지 체크 try: media_path, media_type = identify_and_save_blob(media_input) except Exception as e: print(e) raise ValueError("Unsupported media type. Please upload an image or video.") else: return "No media input found" # 이미지 vs 영상 처리 if media_type == "image": # 단일 이미지만 처리한다고 가정 (멀티-이미지도 확장 가능) pixel_values = load_image(media_path, max_num=12) pixel_values = pixel_values.to(torch.bfloat16).cuda() # (N, 3, H, W) # InternVL 대화 question = f"\n{text_input}" if text_input else "\n" generation_config = dict(max_new_tokens=1024, do_sample=True) response = model.chat( tokenizer, pixel_values, question, generation_config ) return response elif media_type == "video": # 영상: 예시로 첫 8프레임에 대해 처리 pixel_values, num_patches_list = load_video( media_path, num_segments=8, max_num=1 ) pixel_values = pixel_values.to(torch.bfloat16).cuda() question_prefix = "".join([f"Frame{i+1}: \n" for i in range(len(num_patches_list))]) question = question_prefix + (text_input if text_input else "") generation_config = dict(max_new_tokens=1024, do_sample=True) # 영상에서도 동일한 chat() 함수 사용 response = model.chat( tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list ) return response return "Unsupported media type" # 간단한 CSS css = """ #output { height: 500px; overflow: auto; border: 1px solid #ccc; } """ # Gradio 데모 구성 with gr.Blocks(css=css) as demo: gr.Markdown(DESCRIPTION) with gr.Tab(label="Image/Video Input"): with gr.Row(): with gr.Column(): input_media = gr.File( label="Upload Image or Video", type="filepath" ) preview_image = gr.Image(label="Preview", visible=True) text_input = gr.Textbox(label="Question") submit_btn = gr.Button(value="Submit") with gr.Column(): output_text = gr.Textbox(label="Output Text") input_media.change( fn=process_file_upload, inputs=[input_media], outputs=[input_media, preview_image] ) submit_btn.click( internvl_inference, [input_media, text_input], [output_text] ) demo.launch(debug=True)