developer0hye commited on
Commit
c4c0492
ยท
verified ยท
1 Parent(s): 811a8f8

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +309 -0
app.py ADDED
@@ -0,0 +1,309 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import torch
4
+ import os
5
+ import uuid
6
+ import io
7
+ import numpy as np
8
+ from PIL import Image
9
+ import torchvision.transforms as T
10
+ from torchvision.transforms.functional import InterpolationMode
11
+ from transformers import AutoModel, AutoTokenizer
12
+ from decord import VideoReader, cpu
13
+
14
+ # =============================================================================
15
+ # InternVL ์ „์ฒ˜๋ฆฌ/๋กœ๋”ฉ ์ฝ”๋“œ (์›๋ณธ ์˜ˆ์‹œ์—์„œ ๋ฐœ์ทŒ)
16
+ # =============================================================================
17
+ IMAGENET_MEAN = (0.485, 0.456, 0.406)
18
+ IMAGENET_STD = (0.229, 0.224, 0.225)
19
+
20
+ def build_transform(input_size):
21
+ MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
22
+ transform = T.Compose([
23
+ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
24
+ T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
25
+ T.ToTensor(),
26
+ T.Normalize(mean=MEAN, std=STD)
27
+ ])
28
+ return transform
29
+
30
+ def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
31
+ best_ratio_diff = float('inf')
32
+ best_ratio = (1, 1)
33
+ area = width * height
34
+ for ratio in target_ratios:
35
+ target_aspect_ratio = ratio[0] / ratio[1]
36
+ ratio_diff = abs(aspect_ratio - target_aspect_ratio)
37
+ if ratio_diff < best_ratio_diff:
38
+ best_ratio_diff = ratio_diff
39
+ best_ratio = ratio
40
+ elif ratio_diff == best_ratio_diff:
41
+ # ์ด๋ฏธ์ง€ ๋ฉด์  ๊ธฐ์ค€์œผ๋กœ ์ข€ ๋” ํฐ ์ชฝ ์„ ํƒ
42
+ if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
43
+ best_ratio = ratio
44
+ return best_ratio
45
+
46
+ def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
47
+ orig_width, orig_height = image.size
48
+ aspect_ratio = orig_width / orig_height
49
+
50
+ target_ratios = set(
51
+ (i, j) for n in range(min_num, max_num + 1)
52
+ for i in range(1, n + 1)
53
+ for j in range(1, n + 1)
54
+ if i * j <= max_num and i * j >= min_num
55
+ )
56
+ target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
57
+ target_aspect_ratio = find_closest_aspect_ratio(
58
+ aspect_ratio, target_ratios, orig_width, orig_height, image_size
59
+ )
60
+ target_width = image_size * target_aspect_ratio[0]
61
+ target_height = image_size * target_aspect_ratio[1]
62
+ blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
63
+
64
+ resized_img = image.resize((target_width, target_height))
65
+ processed_images = []
66
+ for i in range(blocks):
67
+ box = (
68
+ (i % (target_width // image_size)) * image_size,
69
+ (i // (target_width // image_size)) * image_size,
70
+ ((i % (target_width // image_size)) + 1) * image_size,
71
+ ((i // (target_width // image_size)) + 1) * image_size
72
+ )
73
+ split_img = resized_img.crop(box)
74
+ processed_images.append(split_img)
75
+
76
+ if use_thumbnail and len(processed_images) != 1:
77
+ thumbnail_img = image.resize((image_size, image_size))
78
+ processed_images.append(thumbnail_img)
79
+ return processed_images
80
+
81
+ def load_image(image_file, input_size=448, max_num=12):
82
+ image = Image.open(image_file).convert('RGB')
83
+ transform = build_transform(input_size=input_size)
84
+ images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
85
+ pixel_values = [transform(img) for img in images]
86
+ pixel_values = torch.stack(pixel_values)
87
+ return pixel_values
88
+
89
+ def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
90
+ if bound:
91
+ start, end = bound[0], bound[1]
92
+ else:
93
+ start, end = -100000, 100000
94
+ start_idx = max(first_idx, round(start * fps))
95
+ end_idx = min(round(end * fps), max_frame)
96
+ seg_size = float(end_idx - start_idx) / num_segments
97
+ frame_indices = np.array([
98
+ int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
99
+ for idx in range(num_segments)
100
+ ])
101
+ return frame_indices
102
+
103
+ def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=8):
104
+ """
105
+ InternVL ์˜ˆ์‹œ ์ฝ”๋“œ ์ฐธ๊ณ : ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์„ ์ถ”์ถœํ•˜์—ฌ dynamic_preprocess ์ ์šฉ.
106
+ ์—ฌ๊ธฐ์„œ๋Š” ๊ธฐ๋ณธ์ ์œผ๋กœ num_segments=8๋กœ ์„ค์ •.
107
+ """
108
+ vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
109
+ max_frame = len(vr) - 1
110
+ fps = float(vr.get_avg_fps())
111
+
112
+ pixel_values_list, num_patches_list = [], []
113
+ transform = build_transform(input_size=input_size)
114
+ frame_indices = get_index(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
115
+
116
+ for frame_index in frame_indices:
117
+ frame = vr[frame_index]
118
+ img = Image.fromarray(frame.asnumpy()).convert('RGB')
119
+ processed_imgs = dynamic_preprocess(img, image_size=input_size, use_thumbnail=True, max_num=max_num)
120
+ tile_values = [transform(tile) for tile in processed_imgs]
121
+ tile_values = torch.stack(tile_values)
122
+ num_patches_list.append(tile_values.shape[0])
123
+ pixel_values_list.append(tile_values)
124
+
125
+ # ์—ฌ๋Ÿฌ ํ”„๋ ˆ์ž„์„ ์ด์–ด ๋ถ™์—ฌ ์ตœ์ข… pixel_values ์ƒ์„ฑ
126
+ pixel_values = torch.cat(pixel_values_list, dim=0) # (sum(num_patches_list), 3, H, W)
127
+ return pixel_values, num_patches_list
128
+
129
+
130
+ # =============================================================================
131
+ # InternVL ๋ชจ๋ธ ๋กœ๋”ฉ
132
+ # =============================================================================
133
+ MODEL_ID = "OpenGVLab/InternVL2_5-8B"
134
+
135
+ model = AutoModel.from_pretrained(
136
+ MODEL_ID,
137
+ torch_dtype=torch.bfloat16,
138
+ low_cpu_mem_usage=True,
139
+ use_flash_attn=True,
140
+ trust_remote_code=True
141
+ ).eval().cuda()
142
+
143
+ tokenizer = AutoTokenizer.from_pretrained(
144
+ MODEL_ID,
145
+ trust_remote_code=True,
146
+ use_fast=False
147
+ )
148
+
149
+ # Gradio ์ƒ๋‹จ์— ํ‘œ์‹œํ•  ์„ค๋ช… ๋ฌธ๊ตฌ
150
+ DESCRIPTION = "[InternVL2_5-8B Demo](https://github.com/OpenGVLab/InternVL) - Using the InternVL2_5-8B"
151
+
152
+ image_extensions = Image.registered_extensions()
153
+ video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
154
+
155
+ def identify_and_save_blob(blob_path):
156
+ """
157
+ Qwen ์˜ˆ์ œ ์ฝ”๋“œ์™€ ๋™์ผ: blob์„ ์—ด์–ด๋ณด๊ณ  ์ด๋ฏธ์ง€์ธ์ง€ ์˜์ƒ์ธ์ง€ ํ™•์ธ ํ›„,
158
+ ์ž„์‹œ ํŒŒ์ผ๋กœ ์ €์žฅํ•˜์—ฌ ๊ฒฝ๋กœ ๋ฆฌํ„ด
159
+ """
160
+ try:
161
+ with open(blob_path, 'rb') as file:
162
+ blob_content = file.read()
163
+ # Try to identify if it's an image
164
+ try:
165
+ Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
166
+ extension = ".png" # Default to PNG for saving
167
+ media_type = "image"
168
+ except (IOError, SyntaxError):
169
+ # If it's not a valid image, assume it's a video
170
+ extension = ".mp4" # Default to MP4 for saving
171
+ media_type = "video"
172
+
173
+ # Create a unique filename
174
+ filename = f"temp_{uuid.uuid4()}_media{extension}"
175
+ with open(filename, "wb") as f:
176
+ f.write(blob_content)
177
+ return filename, media_type
178
+ except FileNotFoundError:
179
+ raise ValueError(f"The file {blob_path} was not found.")
180
+ except Exception as e:
181
+ raise ValueError(f"An error occurred while processing the file: {e}")
182
+
183
+ def process_file_upload(file_path):
184
+ """
185
+ ํŒŒ์ผ ์—…๋กœ๋“œ ์‹œ ์ด๋ฏธ์ง€/์˜์ƒ ๋ฏธ๋ฆฌ๋ณด๊ธฐ ํ˜น์€ ๊ทธ๋Œ€๋กœ ํŒจ์Šค.
186
+ """
187
+ if isinstance(file_path, str):
188
+ if file_path.endswith(tuple([i for i, f in image_extensions.items()])):
189
+ # ์ด๋ฏธ์ง€๋ฅผ ์—ด์–ด์„œ preview๋กœ ๋„˜๊น€
190
+ return file_path, Image.open(file_path)
191
+ elif file_path.endswith(video_extensions):
192
+ # ์˜์ƒ์€ preview๋ฅผ None์œผ๋กœ
193
+ return file_path, None
194
+ else:
195
+ # blob ํŒŒ์ผ์ธ ๊ฒฝ์šฐ ์ฒ˜๋ฆฌ
196
+ try:
197
+ media_path, media_type = identify_and_save_blob(file_path)
198
+ if media_type == "image":
199
+ return media_path, Image.open(media_path)
200
+ return media_path, None
201
+ except Exception as e:
202
+ print(e)
203
+ raise ValueError("Unsupported media type. Please upload an image or video.")
204
+ return None, None
205
+
206
+ @spaces.GPU
207
+ def internvl_inference(media_input, text_input=None):
208
+ """
209
+ Qwen ์˜ˆ์ œ์˜ qwen_inference ๋Œ€์‹  InternVL์„ ์ด์šฉํ•œ ์ถ”๋ก  ํ•จ์ˆ˜.
210
+ - ์ด๋ฏธ์ง€/์˜์ƒ ํŒŒ์ผ์„ InternVL์—์„œ ์š”๊ตฌํ•˜๋Š” pixel_values๋กœ ๋ณ€ํ™˜ ํ›„
211
+ model.chat() ํ˜ธ์ถœํ•˜์—ฌ ๋‹ต๋ณ€ ์ƒ์„ฑ.
212
+ """
213
+ if isinstance(media_input, str): # If it's a filepath
214
+ media_path = media_input
215
+
216
+ # ๋ฏธ๋””์–ด ์ข…๋ฅ˜ ์‹๋ณ„
217
+ if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
218
+ media_type = "image"
219
+ elif media_path.endswith(video_extensions):
220
+ media_type = "video"
221
+ else:
222
+ # blob์ธ์ง€ ์ฒดํฌ
223
+ try:
224
+ media_path, media_type = identify_and_save_blob(media_input)
225
+ except Exception as e:
226
+ print(e)
227
+ raise ValueError("Unsupported media type. Please upload an image or video.")
228
+ else:
229
+ return "No media input found"
230
+
231
+ # ์ด๋ฏธ์ง€ vs ์˜์ƒ ์ฒ˜๋ฆฌ
232
+ if media_type == "image":
233
+ # ๋‹จ์ผ ์ด๋ฏธ์ง€๋งŒ ์ฒ˜๋ฆฌํ•œ๋‹ค๊ณ  ๊ฐ€์ • (๋ฉ€ํ‹ฐ-์ด๋ฏธ์ง€๋„ ํ™•์žฅ ๊ฐ€๋Šฅ)
234
+ pixel_values = load_image(media_path, max_num=12)
235
+ pixel_values = pixel_values.to(torch.bfloat16).cuda() # (N, 3, H, W)
236
+ # InternVL ๋Œ€ํ™”
237
+ question = f"<image>\n{text_input}" if text_input else "<image>\n"
238
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
239
+
240
+ response = model.chat(
241
+ tokenizer,
242
+ pixel_values,
243
+ question,
244
+ generation_config
245
+ )
246
+ return response
247
+
248
+ elif media_type == "video":
249
+ # ์˜์ƒ: ์˜ˆ์‹œ๋กœ ์ฒซ 8ํ”„๋ ˆ์ž„์— ๋Œ€ํ•ด ์ฒ˜๋ฆฌ
250
+ pixel_values, num_patches_list = load_video(
251
+ media_path,
252
+ num_segments=8,
253
+ max_num=1
254
+ )
255
+ pixel_values = pixel_values.to(torch.bfloat16).cuda()
256
+ question_prefix = "".join([f"Frame{i+1}: <image>\n" for i in range(len(num_patches_list))])
257
+ question = question_prefix + (text_input if text_input else "")
258
+ generation_config = dict(max_new_tokens=1024, do_sample=True)
259
+
260
+ # ์˜์ƒ์—์„œ๋„ ๋™์ผํ•œ chat() ํ•จ์ˆ˜ ์‚ฌ์šฉ
261
+ response = model.chat(
262
+ tokenizer,
263
+ pixel_values,
264
+ question,
265
+ generation_config,
266
+ num_patches_list=num_patches_list
267
+ )
268
+ return response
269
+
270
+ return "Unsupported media type"
271
+
272
+ # ๊ฐ„๋‹จํ•œ CSS
273
+ css = """
274
+ #output {
275
+ height: 500px;
276
+ overflow: auto;
277
+ border: 1px solid #ccc;
278
+ }
279
+ """
280
+
281
+ # Gradio ๋ฐ๋ชจ ๊ตฌ์„ฑ
282
+ with gr.Blocks(css=css) as demo:
283
+ gr.Markdown(DESCRIPTION)
284
+
285
+ with gr.Tab(label="Image/Video Input"):
286
+ with gr.Row():
287
+ with gr.Column():
288
+ input_media = gr.File(
289
+ label="Upload Image or Video", type="filepath"
290
+ )
291
+ preview_image = gr.Image(label="Preview", visible=True)
292
+ text_input = gr.Textbox(label="Question")
293
+ submit_btn = gr.Button(value="Submit")
294
+ with gr.Column():
295
+ output_text = gr.Textbox(label="Output Text")
296
+
297
+ input_media.change(
298
+ fn=process_file_upload,
299
+ inputs=[input_media],
300
+ outputs=[input_media, preview_image]
301
+ )
302
+
303
+ submit_btn.click(
304
+ internvl_inference,
305
+ [input_media, text_input],
306
+ [output_text]
307
+ )
308
+
309
+ demo.launch(debug=True)