Hugo Flores Garcia commited on
Commit
6fcf6a4
Β·
1 Parent(s): e3ca5f7

update readme

Browse files
Files changed (1) hide show
  1. README.md +43 -3
README.md CHANGED
@@ -31,17 +31,59 @@ pip install -e ./vampnet2
31
  This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files.
32
  Config files are stored in the `conf/` folder.
33
 
 
 
 
 
34
  # How the code is structured
35
 
36
  This code was written fast to meet a publication deadline, so it can be messy and redundant at times. Currently working on cleaning it up.
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  # Usage
39
 
 
 
 
 
 
40
  ## Staging a Run
41
 
42
  Staging a run makes a copy of all the git-tracked files in the codebase and saves them to a folder for reproducibility. You can then run the training script from the staged folder.
43
 
44
- coming soon
 
 
45
 
46
  ## Training a model
47
 
@@ -56,8 +98,6 @@ You just need to provide a list of audio files // folders to fine-tune on, then
56
  python scripts/exp/train.py --args.load conf/lora/birds.yml --save_path /path/to/checkpoints
57
  ```
58
 
59
- ## Getting the Pretrained Models
60
-
61
 
62
 
63
  ## Launching the Gradio Interface
 
31
  This repository relies on [argbind](https://github.com/pseeth/argbind) to manage CLIs and config files.
32
  Config files are stored in the `conf/` folder.
33
 
34
+ ## Getting the Pretrained Models
35
+
36
+ Download the pretrained models from [this link](). Then, extract the models to the `models/` folder.
37
+
38
  # How the code is structured
39
 
40
  This code was written fast to meet a publication deadline, so it can be messy and redundant at times. Currently working on cleaning it up.
41
 
42
+ ```
43
+ β”œβ”€β”€ conf <- (conf files for training, finetuning, etc)
44
+ β”œβ”€β”€ demo.py <- (gradio UI for playing with vampnet)
45
+ β”œβ”€β”€ env <- (environment variables)
46
+ β”‚Β Β  └── env.sh
47
+ β”œβ”€β”€ models <- (extract pretrained models)
48
+ β”‚Β Β  β”œβ”€β”€ spotdl
49
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ c2f.pth <- (coarse2fine checkpoint)
50
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ coarse.pth <- (coarse checkpoint)
51
+ β”‚Β Β  β”‚Β Β  └── codec.pth <- (codec checkpoint)
52
+ β”‚Β Β  └── wavebeat.pth
53
+ β”œβ”€β”€ README.md
54
+ β”œβ”€β”€ scripts
55
+ β”‚Β Β  β”œβ”€β”€ exp
56
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ eval.py <- (eval script)
57
+ β”‚Β Β  β”‚Β Β  └── train.py <- (training/finetuning script)
58
+ β”‚Β Β  └── utils
59
+ β”œβ”€β”€ vampnet
60
+ β”‚Β Β  β”œβ”€β”€ beats.py <- (beat tracking logic)
61
+ β”‚Β Β  β”œβ”€β”€ __init__.py
62
+ β”‚Β Β  β”œβ”€β”€ interface.py <- (high-level programmatic interface)
63
+ β”‚Β Β  β”œβ”€β”€ mask.py
64
+ β”‚Β Β  β”œβ”€β”€ modules
65
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ activations.py
66
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ __init__.py
67
+ β”‚Β Β  β”‚Β Β  β”œβ”€β”€ layers.py
68
+ β”‚Β Β  β”‚Β Β  └── transformer.py <- (architecture + sampling code)
69
+ β”‚Β Β  β”œβ”€β”€ scheduler.py
70
+ β”‚Β Β  └── util.py
71
+ ```
72
+
73
  # Usage
74
 
75
+ First, you'll want to set up your environment
76
+ ```bash
77
+ source ./env/env.sh
78
+ ```
79
+
80
  ## Staging a Run
81
 
82
  Staging a run makes a copy of all the git-tracked files in the codebase and saves them to a folder for reproducibility. You can then run the training script from the staged folder.
83
 
84
+ ```
85
+ stage --name my_run --run_dir /path/to/staging/folder
86
+ ```
87
 
88
  ## Training a model
89
 
 
98
  python scripts/exp/train.py --args.load conf/lora/birds.yml --save_path /path/to/checkpoints
99
  ```
100
 
 
 
101
 
102
 
103
  ## Launching the Gradio Interface