--- title: MinerU app_file: ./demo/app.py sdk: gradio sdk_version: 4.39.0 ---
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU) [![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU) [![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues) [![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf) [![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf) [![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf) [English](README.md) | [įŽ€äŊ“中文](README_zh-CN.md)
# MinerU ## Introduction MinerU is a one-stop, open-source, high-quality data extraction tool, includes the following primary features: - [Magic-PDF](#Magic-PDF) PDF Document Extraction - [Magic-Doc](#Magic-Doc) Webpage & E-book Extraction # Magic-PDF ## Introduction Magic-PDF is a tool designed to convert PDF documents into Markdown format, capable of processing files stored locally or on object storage supporting S3 protocol. Key features include: - Support for multiple front-end model inputs - Removal of headers, footers, footnotes, and page numbers - Human-readable layout formatting - Retains the original document's structure and formatting, including headings, paragraphs, lists, and more - Extraction and display of images and tables within markdown - Conversion of equations into LaTeX format - Automatic detection and conversion of garbled PDFs - Compatibility with CPU and GPU environments - Available for Windows, Linux, and macOS platforms https://github.com/opendatalab/MinerU/assets/11393164/618937cb-dc6a-4646-b433-e3131a5f4070 ## Project Panorama ![Project Panorama](docs/images/project_panorama_en.png) ## Flowchart ![Flowchart](docs/images/flowchart_en.png) ### Dependency repositorys - [PDF-Extract-Kit : A Comprehensive Toolkit for High-Quality PDF Content Extraction](https://github.com/opendatalab/PDF-Extract-Kit) 🚀🚀🚀 ## Getting Started ### Requirements - Python >= 3.9 Using a virtual environment is recommended to avoid potential dependency conflicts; both venv and conda are suitable. For example: ```bash conda create -n MinerU python=3.10 conda activate MinerU ``` ### Installation and Configuration #### 1. Install Magic-PDF Install the full-feature package with pip: >Note: The pip-installed package supports CPU-only and is ideal for quick tests. > >For CUDA/MPS acceleration in production, see [Acceleration Using CUDA or MPS](#4-Acceleration-Using-CUDA-or-MPS). ```bash pip install magic-pdf[full-cpu] ``` The full-feature package depends on detectron2, which requires a compilation installation. If you need to compile it yourself, please refer to https://github.com/facebookresearch/detectron2/issues/5114 Alternatively, you can directly use our precompiled whl package (limited to Python 3.10): ```bash pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/ ``` #### 2. Downloading model weights files For detailed references, please see below [how_to_download_models](docs/how_to_download_models_en.md) After downloading the model weights, move the 'models' directory to a directory on a larger disk space, preferably an SSD. #### 3. Copy the Configuration File and Make Configurations You can get the [magic-pdf.template.json](magic-pdf.template.json) file in the repository root directory. ```bash cp magic-pdf.template.json ~/magic-pdf.json ``` In magic-pdf.json, configure "models-dir" to point to the directory where the model weights files are located. ```json { "models-dir": "/tmp/models" } ``` #### 4. Acceleration Using CUDA or MPS If you have an available Nvidia GPU or are using a Mac with Apple Silicon, you can leverage acceleration with CUDA or MPS respectively. ##### CUDA You need to install the corresponding PyTorch version according to your CUDA version. This example installs the CUDA 11.8 version.More information https://pytorch.org/get-started/locally/ ```bash pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118 ``` Also, you need to modify the value of "device-mode" in the configuration file magic-pdf.json. ```json { "device-mode":"cuda" } ``` ##### MPS For macOS users with M-series chip devices, you can use MPS for inference acceleration. You also need to modify the value of "device-mode" in the configuration file magic-pdf.json. ```json { "device-mode":"mps" } ``` ### Usage #### 1.Usage via Command Line ###### simple ```bash magic-pdf pdf-command --pdf "pdf_path" --inside_model true ``` After the program has finished, you can find the generated markdown files under the directory "/tmp/magic-pdf". You can find the corresponding xxx_model.json file in the markdown directory. If you intend to do secondary development on the post-processing pipeline, you can use the command: ```bash magic-pdf pdf-command --pdf "pdf_path" --model "model_json_path" ``` In this way, you won't need to re-run the model data, making debugging more convenient. ###### more ```bash magic-pdf --help ``` #### 2. Usage via Api ###### Local ```python image_writer = DiskReaderWriter(local_image_dir) image_dir = str(os.path.basename(local_image_dir)) jso_useful_key = {"_pdf_type": "", "model_list": []} pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer) pipe.pipe_classify() pipe.pipe_parse() md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none") ``` ###### Object Storage ```python s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint) image_dir = "s3://img_bucket/" s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir) pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN) jso_useful_key = {"_pdf_type": "", "model_list": []} pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli) pipe.pipe_classify() pipe.pipe_parse() md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none") ``` Demo can be referred to [demo.py](demo/demo.py) # Magic-Doc ## Introduction Magic-Doc is a tool designed to convert web pages or multi-format e-books into markdown format. Key Features Include: - Web Page Extraction - Cross-modal precise parsing of text, images, tables, and formula information. - E-Book Document Extraction - Supports various document formats including epub, mobi, with full adaptation for text and images. - Language Type Identification - Accurate recognition of 176 languages. https://github.com/opendatalab/MinerU/assets/11393164/a5a650e9-f4c0-463e-acc3-960967f1a1ca https://github.com/opendatalab/MinerU/assets/11393164/0f4a6fe9-6cca-4113-9fdc-a537749d764d https://github.com/opendatalab/MinerU/assets/11393164/20438a02-ce6c-4af8-9dde-d722a4e825b2 ## Project Repository - [Magic-Doc](https://github.com/InternLM/magic-doc) Outstanding Webpage and E-book Extraction Tool # All Thanks To Our Contributors # License Information [LICENSE.md](LICENSE.md) The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility. # Acknowledgments - [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR) - [PyMuPDF](https://github.com/pymupdf/PyMuPDF) - [fast-langdetect](https://github.com/LlmKira/fast-langdetect) - [pdfminer.six](https://github.com/pdfminer/pdfminer.six) # Citation ```bibtex @misc{2024mineru, title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool}, author={MinerU Contributors}, howpublished = {\url{https://github.com/opendatalab/MinerU}}, year={2024} } ``` # Star History Star History Chart