File size: 8,773 Bytes
b584747 240e0a0 b584747 240e0a0 b584747 240e0a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
---
title: MinerU
app_file: ./demo/app.py
sdk: gradio
sdk_version: 4.39.0
---
<div id="top"></div>
<div align="center">
[![stars](https://img.shields.io/github/stars/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![forks](https://img.shields.io/github/forks/opendatalab/MinerU.svg)](https://github.com/opendatalab/MinerU)
[![open issues](https://img.shields.io/github/issues-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![issue resolution](https://img.shields.io/github/issues-closed-raw/opendatalab/MinerU)](https://github.com/opendatalab/MinerU/issues)
[![PyPI version](https://badge.fury.io/py/magic-pdf.svg)](https://badge.fury.io/py/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf)](https://pepy.tech/project/magic-pdf)
[![Downloads](https://static.pepy.tech/badge/magic-pdf/month)](https://pepy.tech/project/magic-pdf)
[English](README.md) | [็ฎไฝไธญๆ](README_zh-CN.md)
</div>
<div align="center">
</div>
# MinerU
## Introduction
MinerU is a one-stop, open-source, high-quality data extraction tool, includes the following primary features:
- [Magic-PDF](#Magic-PDF) PDF Document Extraction
- [Magic-Doc](#Magic-Doc) Webpage & E-book Extraction
# Magic-PDF
## Introduction
Magic-PDF is a tool designed to convert PDF documents into Markdown format, capable of processing files stored locally or on object storage supporting S3 protocol.
Key features include:
- Support for multiple front-end model inputs
- Removal of headers, footers, footnotes, and page numbers
- Human-readable layout formatting
- Retains the original document's structure and formatting, including headings, paragraphs, lists, and more
- Extraction and display of images and tables within markdown
- Conversion of equations into LaTeX format
- Automatic detection and conversion of garbled PDFs
- Compatibility with CPU and GPU environments
- Available for Windows, Linux, and macOS platforms
https://github.com/opendatalab/MinerU/assets/11393164/618937cb-dc6a-4646-b433-e3131a5f4070
## Project Panorama
![Project Panorama](docs/images/project_panorama_en.png)
## Flowchart
![Flowchart](docs/images/flowchart_en.png)
### Dependency repositorys
- [PDF-Extract-Kit : A Comprehensive Toolkit for High-Quality PDF Content Extraction](https://github.com/opendatalab/PDF-Extract-Kit) ๐๐๐
## Getting Started
### Requirements
- Python >= 3.9
Using a virtual environment is recommended to avoid potential dependency conflicts; both venv and conda are suitable.
For example:
```bash
conda create -n MinerU python=3.10
conda activate MinerU
```
### Installation and Configuration
#### 1. Install Magic-PDF
Install the full-feature package with pip:
>Note: The pip-installed package supports CPU-only and is ideal for quick tests.
>
>For CUDA/MPS acceleration in production, see [Acceleration Using CUDA or MPS](#4-Acceleration-Using-CUDA-or-MPS).
```bash
pip install magic-pdf[full-cpu]
```
The full-feature package depends on detectron2, which requires a compilation installation.
If you need to compile it yourself, please refer to https://github.com/facebookresearch/detectron2/issues/5114
Alternatively, you can directly use our precompiled whl package (limited to Python 3.10):
```bash
pip install detectron2 --extra-index-url https://myhloli.github.io/wheels/
```
#### 2. Downloading model weights files
For detailed references, please see below [how_to_download_models](docs/how_to_download_models_en.md)
After downloading the model weights, move the 'models' directory to a directory on a larger disk space, preferably an SSD.
#### 3. Copy the Configuration File and Make Configurations
You can get the [magic-pdf.template.json](magic-pdf.template.json) file in the repository root directory.
```bash
cp magic-pdf.template.json ~/magic-pdf.json
```
In magic-pdf.json, configure "models-dir" to point to the directory where the model weights files are located.
```json
{
"models-dir": "/tmp/models"
}
```
#### 4. Acceleration Using CUDA or MPS
If you have an available Nvidia GPU or are using a Mac with Apple Silicon, you can leverage acceleration with CUDA or MPS respectively.
##### CUDA
You need to install the corresponding PyTorch version according to your CUDA version.
This example installs the CUDA 11.8 version.More information https://pytorch.org/get-started/locally/
```bash
pip install --force-reinstall torch==2.3.1 torchvision==0.18.1 --index-url https://download.pytorch.org/whl/cu118
```
Also, you need to modify the value of "device-mode" in the configuration file magic-pdf.json.
```json
{
"device-mode":"cuda"
}
```
##### MPS
For macOS users with M-series chip devices, you can use MPS for inference acceleration.
You also need to modify the value of "device-mode" in the configuration file magic-pdf.json.
```json
{
"device-mode":"mps"
}
```
### Usage
#### 1.Usage via Command Line
###### simple
```bash
magic-pdf pdf-command --pdf "pdf_path" --inside_model true
```
After the program has finished, you can find the generated markdown files under the directory "/tmp/magic-pdf".
You can find the corresponding xxx_model.json file in the markdown directory.
If you intend to do secondary development on the post-processing pipeline, you can use the command:
```bash
magic-pdf pdf-command --pdf "pdf_path" --model "model_json_path"
```
In this way, you won't need to re-run the model data, making debugging more convenient.
###### more
```bash
magic-pdf --help
```
#### 2. Usage via Api
###### Local
```python
image_writer = DiskReaderWriter(local_image_dir)
image_dir = str(os.path.basename(local_image_dir))
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```
###### Object Storage
```python
s3pdf_cli = S3ReaderWriter(pdf_ak, pdf_sk, pdf_endpoint)
image_dir = "s3://img_bucket/"
s3image_cli = S3ReaderWriter(img_ak, img_sk, img_endpoint, parent_path=image_dir)
pdf_bytes = s3pdf_cli.read(s3_pdf_path, mode=s3pdf_cli.MODE_BIN)
jso_useful_key = {"_pdf_type": "", "model_list": []}
pipe = UNIPipe(pdf_bytes, jso_useful_key, s3image_cli)
pipe.pipe_classify()
pipe.pipe_parse()
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode="none")
```
Demo can be referred to [demo.py](demo/demo.py)
# Magic-Doc
## Introduction
Magic-Doc is a tool designed to convert web pages or multi-format e-books into markdown format.
Key Features Include:
- Web Page Extraction
- Cross-modal precise parsing of text, images, tables, and formula information.
- E-Book Document Extraction
- Supports various document formats including epub, mobi, with full adaptation for text and images.
- Language Type Identification
- Accurate recognition of 176 languages.
https://github.com/opendatalab/MinerU/assets/11393164/a5a650e9-f4c0-463e-acc3-960967f1a1ca
https://github.com/opendatalab/MinerU/assets/11393164/0f4a6fe9-6cca-4113-9fdc-a537749d764d
https://github.com/opendatalab/MinerU/assets/11393164/20438a02-ce6c-4af8-9dde-d722a4e825b2
## Project Repository
- [Magic-Doc](https://github.com/InternLM/magic-doc)
Outstanding Webpage and E-book Extraction Tool
# All Thanks To Our Contributors
<a href="https://github.com/magicpdf/Magic-PDF/graphs/contributors">
<img src="https://contrib.rocks/image?repo=opendatalab/MinerU" />
</a>
# License Information
[LICENSE.md](LICENSE.md)
The project currently leverages PyMuPDF to deliver advanced functionalities; however, its adherence to the AGPL license may impose limitations on certain use cases. In upcoming iterations, we intend to explore and transition to a more permissively licensed PDF processing library to enhance user-friendliness and flexibility.
# Acknowledgments
- [PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
- [PyMuPDF](https://github.com/pymupdf/PyMuPDF)
- [fast-langdetect](https://github.com/LlmKira/fast-langdetect)
- [pdfminer.six](https://github.com/pdfminer/pdfminer.six)
# Citation
```bibtex
@misc{2024mineru,
title={MinerU: A One-stop, Open-source, High-quality Data Extraction Tool},
author={MinerU Contributors},
howpublished = {\url{https://github.com/opendatalab/MinerU}},
year={2024}
}
```
# Star History
<a>
<picture>
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date&theme=dark" />
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=opendatalab/MinerU&type=Date" />
</picture>
</a>
|