Spaces:
Running
on
Zero
Running
on
Zero
Jose Benitez
commited on
Commit
·
5bccfc0
1
Parent(s):
7f2e027
add video support
Browse files
app.py
CHANGED
@@ -26,7 +26,8 @@ css = """
|
|
26 |
height: 62px;
|
27 |
}
|
28 |
"""
|
29 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
30 |
model_configs = {
|
31 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
32 |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
@@ -55,48 +56,91 @@ Please refer to our [paper](https://arxiv.org/abs/2406.09414), [project page](ht
|
|
55 |
def predict_depth(image):
|
56 |
return model.infer_image(image)
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
depth = predict_depth(image[:, :, ::-1])
|
78 |
-
|
79 |
-
raw_depth = Image.fromarray(depth.astype('uint16'))
|
80 |
-
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
81 |
-
raw_depth.save(tmp_raw_depth.name)
|
82 |
-
|
83 |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
84 |
depth = depth.astype(np.uint8)
|
85 |
-
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
|
94 |
-
|
95 |
-
example_files = os.listdir('assets/examples')
|
96 |
-
example_files.sort()
|
97 |
-
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
98 |
-
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
if __name__ == '__main__':
|
102 |
demo.queue().launch(share=True)
|
|
|
26 |
height: 62px;
|
27 |
}
|
28 |
"""
|
29 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
30 |
+
|
31 |
model_configs = {
|
32 |
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
33 |
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
|
|
56 |
def predict_depth(image):
|
57 |
return model.infer_image(image)
|
58 |
|
59 |
+
def process_video(video_path):
|
60 |
+
input_size = 518
|
61 |
+
temp_output_path = tempfile.mktemp(suffix='.mp4')
|
62 |
+
|
63 |
+
raw_video = cv2.VideoCapture(video_path)
|
64 |
+
frame_width = int(raw_video.get(cv2.CAP_PROP_FRAME_WIDTH))
|
65 |
+
frame_height = int(raw_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
66 |
+
frame_rate = int(raw_video.get(cv2.CAP_PROP_FPS))
|
67 |
+
|
68 |
+
out = cv2.VideoWriter(temp_output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (frame_width, frame_height))
|
69 |
+
|
70 |
+
while raw_video.isOpened():
|
71 |
+
ret, raw_frame = raw_video.read()
|
72 |
+
if not ret:
|
73 |
+
break
|
74 |
+
|
75 |
+
depth = model.infer_image(raw_frame, input_size)
|
76 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
78 |
depth = depth.astype(np.uint8)
|
79 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255)[:, :, ::-1].astype(np.uint8)
|
80 |
+
|
81 |
+
out.write(colored_depth)
|
82 |
+
|
83 |
+
raw_video.release()
|
84 |
+
out.release()
|
85 |
+
|
86 |
+
return temp_output_path
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
with gr.Blocks(css=css) as demo:
|
89 |
+
gr.Markdown(title)
|
90 |
+
gr.Markdown(description)
|
91 |
+
|
92 |
+
with gr.Tabs():
|
93 |
+
with gr.TabItem("Image"):
|
94 |
+
gr.Markdown("### Depth Prediction demo")
|
95 |
+
with gr.Row():
|
96 |
+
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
97 |
+
depth_image_slider = ImageSlider(label="Depth Map with Slider View", elem_id='img-display-output', position=0.5)
|
98 |
+
submit = gr.Button(value="Compute Depth")
|
99 |
+
gray_depth_file = gr.File(label="Grayscale depth map", elem_id="download",)
|
100 |
+
raw_file = gr.File(label="16-bit raw output (can be considered as disparity)", elem_id="download",)
|
101 |
+
|
102 |
+
cmap = matplotlib.colormaps.get_cmap('Spectral_r')
|
103 |
+
|
104 |
+
def on_submit(image):
|
105 |
+
original_image = image.copy()
|
106 |
+
|
107 |
+
h, w = image.shape[:2]
|
108 |
+
|
109 |
+
depth = predict_depth(image[:, :, ::-1])
|
110 |
+
|
111 |
+
raw_depth = Image.fromarray(depth.astype('uint16'))
|
112 |
+
tmp_raw_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
113 |
+
raw_depth.save(tmp_raw_depth.name)
|
114 |
+
|
115 |
+
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0
|
116 |
+
depth = depth.astype(np.uint8)
|
117 |
+
colored_depth = (cmap(depth)[:, :, :3] * 255).astype(np.uint8)
|
118 |
+
|
119 |
+
gray_depth = Image.fromarray(depth)
|
120 |
+
tmp_gray_depth = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
|
121 |
+
gray_depth.save(tmp_gray_depth.name)
|
122 |
+
|
123 |
+
return [(original_image, colored_depth), tmp_gray_depth.name, tmp_raw_depth.name]
|
124 |
+
|
125 |
+
submit.click(on_submit, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file])
|
126 |
+
|
127 |
+
example_files = os.listdir('assets/examples')
|
128 |
+
example_files.sort()
|
129 |
+
example_files = [os.path.join('assets/examples', filename) for filename in example_files]
|
130 |
+
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[depth_image_slider, gray_depth_file, raw_file], fn=on_submit)
|
131 |
+
|
132 |
+
with gr.TabItem("Video"):
|
133 |
+
gr.Markdown("### Video Depth Prediction demo")
|
134 |
+
input_video = gr.Video(label="Input Video")
|
135 |
+
output_video = gr.Video(label="Output Video")
|
136 |
+
process_video_btn = gr.Button(value="Process Video")
|
137 |
+
|
138 |
+
process_video_btn.click(process_video, inputs=[input_video], outputs=[output_video])
|
139 |
+
|
140 |
+
example_files = os.listdir('assets/examples_video')
|
141 |
+
example_files.sort()
|
142 |
+
example_files = [os.path.join('assets/examples_video', filename) for filename in example_files]
|
143 |
+
examples = gr.Examples(examples=example_files, inputs=[input_video], outputs=[output_video], fn=process_video)
|
144 |
|
145 |
if __name__ == '__main__':
|
146 |
demo.queue().launch(share=True)
|