Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import json | |
import logging | |
import os | |
from datetime import datetime | |
from typing import Union | |
from lm_eval import evaluator, utils | |
from lm_eval.tasks import TaskManager | |
from src.backend.manage_requests import EvalRequest | |
from src.envs import API | |
from src.logging import setup_logger | |
logging.getLogger("openai").setLevel(logging.WARNING) | |
logger = setup_logger(__name__) | |
def run_evaluation( | |
eval_request: EvalRequest, | |
task_names: list, | |
num_fewshot: int, | |
batch_size: Union[int, str], | |
device: str, | |
local_dir: str, | |
results_repo: str, | |
no_cache: bool = True, | |
limit: int = None, | |
): | |
"""Runs one evaluation for the current evaluation request file, then pushes the results to the hub. | |
Args: | |
eval_request (EvalRequest): Input evaluation request file representation | |
task_names (list): Tasks to launch | |
num_fewshot (int): Number of few shots to use | |
batch_size (int or str): Selected batch size or 'auto' | |
device (str): "cpu" or "cuda:0", depending on what you assigned to the space | |
local_dir (str): Where to save the results locally | |
results_repo (str): To which repository to upload the results | |
no_cache (bool, optional): Whether to use a cache or not | |
limit (int, optional): Whether to use a number of samples only for the evaluation - only for debugging | |
Returns: | |
_type_: _description_ | |
""" | |
if limit: | |
logger.info( | |
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT." | |
) | |
task_manager = TaskManager() | |
all_tasks = task_manager.all_tasks | |
task_names = utils.pattern_match(task_names, all_tasks) | |
logger.info(f"Selected Tasks: {task_names}") | |
results = evaluator.simple_evaluate( | |
model="hf", | |
model_args=eval_request.get_model_args(), | |
tasks=task_names, | |
num_fewshot=num_fewshot, | |
batch_size=batch_size, | |
device=device, | |
limit=limit, | |
write_out=True, # Whether to write out an example document and model input, for checking task integrity | |
) | |
results["config"]["model_dtype"] = eval_request.precision | |
results["config"]["model_name"] = eval_request.model | |
results["config"]["model_sha"] = eval_request.revision | |
dumped = json.dumps(results, indent=2) | |
logger.info(dumped) | |
output_path = os.path.join(local_dir, *eval_request.model.split("/"), f"results_{datetime.now()}.json") | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
with open(output_path, "w") as f: | |
f.write(dumped) | |
logger.info(evaluator.make_table(results)) | |
API.upload_file( | |
path_or_fileobj=output_path, | |
path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json", | |
repo_id=results_repo, | |
repo_type="dataset", | |
) | |
return results | |