|
import streamlit as st |
|
import torch |
|
from transformers import AlbertTokenizer, AlbertForSequenceClassification |
|
import plotly.graph_objects as go |
|
|
|
|
|
logo_url = "https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png" |
|
|
|
|
|
st.logo(logo_url, link="https://dejan.ai") |
|
|
|
|
|
st.title("Search Query Form Classifier") |
|
st.write( |
|
"Ambiguous search queries are candidates for query expansion. Our model identifies such queries with an 80 percent accuracy and is deployed in a batch processing pipeline directly connected with Google Search Console API. In this demo you can test the model capability by testing individual queries." |
|
) |
|
st.write("Enter a query to check if it's well-formed:") |
|
|
|
|
|
model_name = 'dejanseo/Query-Quality-Classifier' |
|
tokenizer = AlbertTokenizer.from_pretrained(model_name) |
|
model = AlbertForSequenceClassification.from_pretrained(model_name) |
|
|
|
|
|
model.eval() |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model.to(device) |
|
|
|
|
|
tab1, tab2 = st.tabs(["Single Query", "Bulk Query"]) |
|
|
|
with tab1: |
|
user_input = st.text_input("Query:", "where can I book cheap flights to london") |
|
|
|
|
|
def classify_query(query): |
|
|
|
inputs = tokenizer.encode_plus( |
|
query, |
|
add_special_tokens=True, |
|
max_length=32, |
|
padding='max_length', |
|
truncation=True, |
|
return_attention_mask=True, |
|
return_tensors='pt' |
|
) |
|
|
|
input_ids = inputs['input_ids'].to(device) |
|
attention_mask = inputs['attention_mask'].to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model(input_ids, attention_mask=attention_mask) |
|
logits = outputs.logits |
|
softmax_scores = torch.softmax(logits, dim=1).cpu().numpy()[0] |
|
confidence = softmax_scores[1] * 100 |
|
|
|
return confidence |
|
|
|
|
|
def get_color(confidence): |
|
if confidence < 50: |
|
return 'rgba(255, 51, 0, 0.8)' |
|
else: |
|
return 'rgba(57, 172, 57, 0.8)' |
|
|
|
|
|
if user_input: |
|
confidence = classify_query(user_input) |
|
|
|
|
|
fig = go.Figure() |
|
|
|
|
|
fig.add_trace(go.Bar( |
|
x=[100], |
|
y=['Well-formedness Factor'], |
|
orientation='h', |
|
marker=dict( |
|
color='lightgrey' |
|
), |
|
width=0.8 |
|
)) |
|
|
|
|
|
fig.add_trace(go.Bar( |
|
x=[confidence], |
|
y=['Well-formedness Factor'], |
|
orientation='h', |
|
marker=dict( |
|
color=get_color(confidence) |
|
), |
|
width=0.8 |
|
)) |
|
|
|
fig.update_layout( |
|
xaxis=dict(range=[0, 100], title='Well-formedness Factor'), |
|
yaxis=dict(showticklabels=False), |
|
width=600, |
|
height=250, |
|
title_text='Well-formedness Factor', |
|
plot_bgcolor='rgba(0,0,0,0)', |
|
showlegend=False |
|
) |
|
|
|
st.plotly_chart(fig) |
|
|
|
if confidence >= 50: |
|
st.success(f"Query Score: {confidence:.2f}% Most likely doesn't require query expansion.") |
|
st.subheader(f":sparkles: What's next?", divider="gray") |
|
st.write("Connect with Google Search Console, Semrush, Ahrefs or any other search query source API and detect all queries which could benefit from expansion.") |
|
st.write("[Engage our team](https://dejan.ai/call/) if you'd like us to do this for you.") |
|
else: |
|
st.error(f"The query is likely not well-formed with a score of {100 - confidence:.2f}% and most likely requires query expansion.") |
|
st.subheader(f":sparkles: What's next?", divider="gray") |
|
st.write("Connect with Google Search Console, Semrush, Ahrefs or any other search query source API and detect all queries which could benefit from expansion.") |
|
st.write("[Engage our team](https://dejan.ai/call/) if you'd like us to do this for you.") |
|
|
|
with tab2: |
|
st.write("Paste multiple queries line-separated (no headers or extra data):") |
|
bulk_input = st.text_area("Bulk Queries:", height=200) |
|
|
|
if bulk_input: |
|
bulk_queries = bulk_input.splitlines() |
|
st.write("Processing queries...") |
|
|
|
|
|
results = [(query, classify_query(query)) for query in bulk_queries] |
|
|
|
|
|
for query, confidence in results: |
|
st.write(f"Query: {query} - Score: {confidence:.2f}%") |
|
if confidence >= 50: |
|
st.success("Well-formed") |
|
else: |
|
st.error("Not well-formed") |
|
|
|
st.subheader(f":sparkles: What's next?", divider="gray") |
|
st.write("Connect with Google Search Console, Semrush, Ahrefs or any other search query source API and detect all queries which could benefit from expansion.") |
|
st.write("[Engage our team](https://dejan.ai/call/) if you'd like us to do this for you.") |