|
import json |
|
import os.path |
|
from functools import lru_cache |
|
from typing import Union, List |
|
|
|
import numpy as np |
|
from PIL import Image |
|
from huggingface_hub import hf_hub_download, HfFileSystem |
|
|
|
try: |
|
from typing import Literal |
|
except (ModuleNotFoundError, ImportError): |
|
from typing_extensions import Literal |
|
|
|
from imgutils.data import MultiImagesTyping, load_images, ImageTyping |
|
from imgutils.utils import open_onnx_model |
|
|
|
hf_fs = HfFileSystem() |
|
|
|
|
|
def _normalize(data, mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)): |
|
mean, std = np.asarray(mean), np.asarray(std) |
|
return (data - mean[:, None, None]) / std[:, None, None] |
|
|
|
|
|
def _preprocess_image(image: Image.Image, size: int = 384): |
|
image = image.resize((size, size), resample=Image.BILINEAR) |
|
|
|
data = np.array(image).transpose(2, 0, 1).astype(np.float32) / 255.0 |
|
data = _normalize(data) |
|
|
|
return data |
|
|
|
|
|
@lru_cache() |
|
def _open_feat_model(model): |
|
return open_onnx_model(hf_hub_download( |
|
f'deepghs/ccip_onnx', |
|
f'{model}/model_feat.onnx', |
|
)) |
|
|
|
|
|
@lru_cache() |
|
def _open_metric_model(model): |
|
return open_onnx_model(hf_hub_download( |
|
f'deepghs/ccip_onnx', |
|
f'{model}/model_metrics.onnx', |
|
)) |
|
|
|
|
|
@lru_cache() |
|
def _open_metrics(model): |
|
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/metrics.json'), 'r') as f: |
|
return json.load(f) |
|
|
|
|
|
@lru_cache() |
|
def _open_cluster_metrics(model): |
|
with open(hf_hub_download(f'deepghs/ccip_onnx', f'{model}/cluster.json'), 'r') as f: |
|
return json.load(f) |
|
|
|
|
|
_VALID_MODEL_NAMES = [ |
|
os.path.basename(os.path.dirname(file)) for file in |
|
hf_fs.glob('deepghs/ccip_onnx/*/model.ckpt') |
|
] |
|
_DEFAULT_MODEL_NAMES = 'ccip-caformer-24-randaug-pruned' |
|
|
|
|
|
def ccip_extract_feature(image: ImageTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES): |
|
""" |
|
Extracts the feature vector of the character from the given anime image. |
|
|
|
:param image: The anime image containing a single character. |
|
:type image: ImageTyping |
|
|
|
:param size: The size of the input image to be used for feature extraction. (default: ``384``) |
|
:type size: int |
|
|
|
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``) |
|
The available model names are: ``ccip-caformer-24-randaug-pruned``, |
|
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``. |
|
:type model: str |
|
|
|
:return: The feature vector of the character. |
|
:rtype: numpy.ndarray |
|
|
|
Examples:: |
|
>>> from imgutils.metrics import ccip_extract_feature |
|
>>> |
|
>>> feat = ccip_extract_feature('ccip/1.jpg') |
|
>>> feat.shape, feat.dtype |
|
((768,), dtype('float32')) |
|
""" |
|
return ccip_batch_extract_features([image], size, model)[0] |
|
|
|
|
|
def ccip_batch_extract_features(images: MultiImagesTyping, size: int = 384, model: str = _DEFAULT_MODEL_NAMES): |
|
""" |
|
Extracts the feature vectors of multiple images using the specified model. |
|
|
|
:param images: The input images from which to extract the feature vectors. |
|
:type images: MultiImagesTyping |
|
|
|
:param size: The size of the input image to be used for feature extraction. (default: ``384``) |
|
:type size: int |
|
|
|
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``) |
|
The available model names are: ``ccip-caformer-24-randaug-pruned``, |
|
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``. |
|
:type model: str |
|
|
|
:return: The feature vectors of the input images. |
|
:rtype: numpy.ndarray |
|
|
|
Examples:: |
|
>>> from imgutils.metrics import ccip_batch_extract_features |
|
>>> |
|
>>> feat = ccip_batch_extract_features(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg']) |
|
>>> feat.shape, feat.dtype |
|
((3, 768), dtype('float32')) |
|
""" |
|
images = load_images(images, mode='RGB') |
|
data = np.stack([_preprocess_image(item, size=size) for item in images]).astype(np.float32) |
|
output, = _open_feat_model(model).run(['output'], {'input': data}) |
|
return output |
|
|
|
|
|
_FeatureOrImage = Union[ImageTyping, np.ndarray] |
|
|
|
|
|
def _p_feature(x: _FeatureOrImage, size: int = 384, model: str = _DEFAULT_MODEL_NAMES): |
|
if isinstance(x, np.ndarray): |
|
return x |
|
else: |
|
return ccip_extract_feature(x, size, model) |
|
|
|
|
|
def ccip_default_threshold(model: str = _DEFAULT_MODEL_NAMES) -> float: |
|
""" |
|
Retrieves the default threshold value obtained from model metrics in the Hugging Face model repository. |
|
|
|
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``) |
|
The available model names are: ``ccip-caformer-24-randaug-pruned``, |
|
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``. |
|
:type model: str |
|
|
|
:return: The default threshold value obtained from model metrics. |
|
:rtype: float |
|
|
|
Examples:: |
|
>>> from imgutils.metrics import ccip_default_threshold |
|
>>> |
|
>>> ccip_default_threshold() |
|
0.17847511429108218 |
|
>>> ccip_default_threshold('ccip-caformer-6-randaug-pruned_fp32') |
|
0.1951224011983088 |
|
>>> ccip_default_threshold('ccip-caformer-5_fp32') |
|
0.18397327797685215 |
|
""" |
|
return _open_metrics(model)['threshold'] |
|
|
|
|
|
def ccip_difference(x: _FeatureOrImage, y: _FeatureOrImage, |
|
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> float: |
|
""" |
|
Calculates the difference value between two anime characters based on their images or feature vectors. |
|
|
|
:param x: The image or feature vector of the first anime character. |
|
:type x: Union[ImageTyping, np.ndarray] |
|
|
|
:param y: The image or feature vector of the second anime character. |
|
:type y: Union[ImageTyping, np.ndarray] |
|
|
|
:param size: The size of the input image to be used for feature extraction. (default: ``384``) |
|
:type size: int |
|
|
|
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``) |
|
The available model names are: ``ccip-caformer-24-randaug-pruned``, |
|
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``. |
|
:type model: str |
|
|
|
:return: The difference value between the two anime characters. |
|
:rtype: float |
|
|
|
Examples:: |
|
>>> from imgutils.metrics import ccip_difference |
|
>>> |
|
>>> ccip_difference('ccip/1.jpg', 'ccip/2.jpg') # same character |
|
0.16583099961280823 |
|
>>> |
|
>>> # different characters |
|
>>> ccip_difference('ccip/1.jpg', 'ccip/6.jpg') |
|
0.42947039008140564 |
|
>>> ccip_difference('ccip/1.jpg', 'ccip/7.jpg') |
|
0.4037521779537201 |
|
>>> ccip_difference('ccip/2.jpg', 'ccip/6.jpg') |
|
0.4371533691883087 |
|
>>> ccip_difference('ccip/2.jpg', 'ccip/7.jpg') |
|
0.40748104453086853 |
|
>>> ccip_difference('ccip/6.jpg', 'ccip/7.jpg') |
|
0.392294704914093 |
|
""" |
|
return ccip_batch_differences([x, y], size, model)[0, 1].item() |
|
|
|
|
|
def ccip_batch_differences(images: List[_FeatureOrImage], |
|
size: int = 384, model: str = _DEFAULT_MODEL_NAMES) -> np.ndarray: |
|
""" |
|
Calculates the pairwise differences between a given list of images or feature vectors representing anime characters. |
|
|
|
:param images: The list of images or feature vectors representing anime characters. |
|
:type images: List[Union[ImageTyping, np.ndarray]] |
|
|
|
:param size: The size of the input image to be used for feature extraction. (default: ``384``) |
|
:type size: int |
|
|
|
:param model: The name of the model to use for feature extraction. (default: ``ccip-caformer-24-randaug-pruned``) |
|
The available model names are: ``ccip-caformer-24-randaug-pruned``, |
|
``ccip-caformer-6-randaug-pruned_fp32``, ``ccip-caformer-5_fp32``. |
|
:type model: str |
|
|
|
:return: The matrix of pairwise differences between the given images or feature vectors. |
|
:rtype: np.ndarray |
|
|
|
Examples:: |
|
>>> from imgutils.metrics import ccip_batch_differences |
|
>>> |
|
>>> ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg']) |
|
array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01], |
|
[1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01], |
|
[4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01], |
|
[4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]], |
|
dtype=float32) |
|
""" |
|
input_ = np.stack([_p_feature(img, size, model) for img in images]).astype(np.float32) |
|
output, = _open_metric_model(model).run(['output'], {'input': input_}) |
|
return output |
|
|