Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import requests
|
3 |
+
import gradio as gr
|
4 |
+
import random
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
import datetime
|
8 |
+
from datetime import datetime
|
9 |
+
|
10 |
+
print('for update')
|
11 |
+
|
12 |
+
API_TOKEN = os.getenv("API_TOKEN")
|
13 |
+
DECODEM_TOKEN=os.getenv("DECODEM_TOKEN")
|
14 |
+
|
15 |
+
|
16 |
+
from huggingface_hub import InferenceApi
|
17 |
+
inference = InferenceApi("bigscience/bloom",token=API_TOKEN)
|
18 |
+
|
19 |
+
headers = {'Content-type': 'application/json', 'Accept': 'text/plain'}
|
20 |
+
url_decodemprompts='https://us-central1-createinsightsproject.cloudfunctions.net/getdecodemprompts'
|
21 |
+
|
22 |
+
data={"prompt_type":'ad_text_prompt',"decodem_token":DECODEM_TOKEN}
|
23 |
+
try:
|
24 |
+
r = requests.post(url_decodemprompts, data=json.dumps(data), headers=headers)
|
25 |
+
except requests.exceptions.ReadTimeout as e:
|
26 |
+
print(e)
|
27 |
+
#print(r.content)
|
28 |
+
|
29 |
+
prompt_text=str(r.content, 'UTF-8')
|
30 |
+
print(prompt_text)
|
31 |
+
|
32 |
+
def infer(prompt,
|
33 |
+
max_length = 250,
|
34 |
+
top_k = 0,
|
35 |
+
num_beams = 0,
|
36 |
+
no_repeat_ngram_size = 2,
|
37 |
+
top_p = 0.9,
|
38 |
+
seed=42,
|
39 |
+
temperature=0.7,
|
40 |
+
greedy_decoding = False,
|
41 |
+
return_full_text = False):
|
42 |
+
|
43 |
+
print(seed)
|
44 |
+
top_k = None if top_k == 0 else top_k
|
45 |
+
do_sample = False if num_beams > 0 else not greedy_decoding
|
46 |
+
num_beams = None if (greedy_decoding or num_beams == 0) else num_beams
|
47 |
+
no_repeat_ngram_size = None if num_beams is None else no_repeat_ngram_size
|
48 |
+
top_p = None if num_beams else top_p
|
49 |
+
early_stopping = None if num_beams is None else num_beams > 0
|
50 |
+
|
51 |
+
params = {
|
52 |
+
"max_new_tokens": max_length,
|
53 |
+
"top_k": top_k,
|
54 |
+
"top_p": top_p,
|
55 |
+
"temperature": temperature,
|
56 |
+
"do_sample": do_sample,
|
57 |
+
"seed": seed,
|
58 |
+
"early_stopping":early_stopping,
|
59 |
+
"no_repeat_ngram_size":no_repeat_ngram_size,
|
60 |
+
"num_beams":num_beams,
|
61 |
+
"return_full_text":return_full_text
|
62 |
+
}
|
63 |
+
|
64 |
+
s = time.time()
|
65 |
+
response = inference(prompt, params=params)
|
66 |
+
#print(response)
|
67 |
+
proc_time = time.time()-s
|
68 |
+
#print(f"Processing time was {proc_time} seconds")
|
69 |
+
return response
|
70 |
+
|
71 |
+
def getadline(text_inp):
|
72 |
+
print(text_inp)
|
73 |
+
print(datetime.today().strftime("%d-%m-%Y"))
|
74 |
+
|
75 |
+
text = prompt+"\nInput:"+text_inp + "\nOutput:"
|
76 |
+
resp = infer(text,seed=random.randint(0,100))
|
77 |
+
|
78 |
+
generated_text=resp[0]['generated_text']
|
79 |
+
result = generated_text.replace(text,'').strip()
|
80 |
+
result = result.replace("Output:","")
|
81 |
+
parts = result.split("###")
|
82 |
+
topic = parts[0].strip()
|
83 |
+
topic="\n".join(topic.split('\n')[:3])
|
84 |
+
|
85 |
+
response_nsfw = requests.get('https://github.com/coffee-and-fun/google-profanity-words/raw/main/data/list.txt')
|
86 |
+
data_nsfw = response_nsfw.text
|
87 |
+
nsfwlist=data_nsfw.split('\n')
|
88 |
+
nsfwlowerlist=[]
|
89 |
+
for each in nsfwlist:
|
90 |
+
if each!='':
|
91 |
+
nsfwlowerlist.append(each.lower())
|
92 |
+
nsfwlowerlist.extend(['bra','gay','lesbian',])
|
93 |
+
print(topic)
|
94 |
+
foundnsfw=0
|
95 |
+
for each_word in nsfwlowerlist:
|
96 |
+
if each_word in topic.lower() or each_word in text_inp :
|
97 |
+
foundnsfw=1
|
98 |
+
if foundnsfw==1:
|
99 |
+
topic="Unsafe content found. Please try again with different prompts."
|
100 |
+
print(topic)
|
101 |
+
return(topic)
|
102 |
+
|
103 |
+
with gr.Blocks() as demo:
|
104 |
+
gr.Markdown("<h1><center>Market Sizing Framework for Your Business</center></h1>")
|
105 |
+
gr.Markdown(
|
106 |
+
"""ChatGPT based Insights from <a href="https://www.decodem.ai">Decodem.ai</a> for businesses.\nWhile ChatGPT has multiple use cases we have evolved specific use cases/ templates for businesses \n\n This template provides ideas on how a business can size a market they are entering. Enter a business area to size and get the results. Use examples as a guide. We use a equally powerful AI model bigscience/bloom."""
|
107 |
+
)
|
108 |
+
textbox = gr.Textbox(placeholder="Enter market size focus for business here...", lines=1,label='Your business area')
|
109 |
+
btn = gr.Button("Generate")
|
110 |
+
#output1 = gr.Textbox(lines=2,label='Market Sizing Framework')
|
111 |
+
output_image = gr.components.Image(label="Image")
|
112 |
+
|
113 |
+
|
114 |
+
btn.click(getideas,inputs=[textbox], outputs=[output_image])
|
115 |
+
examples = gr.Examples(examples=['ice cream parlor in London','HR saas for fintech','book shops in NYC','Starbucks cafe in Bangalore','organic vegetables via ecommerce','grocery delivery'],
|
116 |
+
inputs=[textbox])
|
117 |
+
|
118 |
+
|
119 |
+
demo.launch()
|