debisoft commited on
Commit
64e26a8
·
1 Parent(s): 6d8d836

1st commit!

Browse files
Files changed (2) hide show
  1. app.py +136 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ import requests
4
+ import os
5
+ import gradio as gr
6
+ import json
7
+ from dotenv import load_dotenv, find_dotenv
8
+ _ = load_dotenv(find_dotenv())
9
+
10
+ from predibase import Predibase, FinetuningConfig, DeploymentConfig
11
+
12
+ # Get a KEY from https://app.predibase.com/
13
+ api_token = os.getenv('PREDIBASE_API_KEY')
14
+ pb = Predibase(api_token=api_token)
15
+
16
+ adapter_id = 'tour-assistant-model/15'
17
+ lorax_client = pb.deployments.client("solar-1-mini-chat-240612")
18
+
19
+
20
+ def extract_json(gen_text, n_shot_learning=0):
21
+ if(n_shot_learning == -1) :
22
+ start_index = 0
23
+ else :
24
+ start_index = gen_text.index("### Response:\n{") + 14
25
+ if(n_shot_learning > 0) :
26
+ for i in range(0, n_shot_learning):
27
+ gen_text = gen_text[start_index:]
28
+ start_index = gen_text.index("### Response:\n{") + 14
29
+ end_index = gen_text.find("}\n\n### ") + 1
30
+ return gen_text[start_index:end_index]
31
+
32
+ def get_completion(prompt):
33
+ return lorax_client.generate(prompt, adapter_id=adapter_id, max_new_tokens=1000).generated_text
34
+
35
+ def greet(input):
36
+ sys_str = "You are a helpful support assistant. Answer the following question."
37
+ qa_list = []
38
+ n_prompt_list = []
39
+ # qa_list.append({
40
+ # "question": "What are the benefits of joining a union?",
41
+ # "answer": "Collective bargaining of salary."
42
+ # })
43
+ #
44
+ # qa_list.append({
45
+ # "question": "How much are union dues, and what do they cover?",
46
+ # "answer": "The union dues for our union is 3%."
47
+ # })
48
+ #
49
+ # qa_list.append({
50
+ # "question": "How does the union handle grievances and disputes?",
51
+ # "answer": "There will be a panel to oversee disputes"
52
+ # })
53
+ #
54
+ # qa_list.append({
55
+ # "question": "Will joining a union affect my job security?",
56
+ # "answer": "No."
57
+ # })
58
+ #
59
+ # qa_list.append({
60
+ # "question": "What is the process for joining a union?",
61
+ # "answer": "Please use the contact form."
62
+ # })
63
+ #
64
+ # qa_list.append({
65
+ # "question": "How do unions negotiate contracts with employers?",
66
+ # "answer": "Our dear leader will handle the negotiations."
67
+ # })
68
+ #
69
+ # qa_list.append({
70
+ # "question": "What role do I play as a union member?",
71
+ # "answer": "You will be invited to our monthly picnics"
72
+ # })
73
+ #
74
+ # qa_list.append({
75
+ # "question": "How do unions ensure that employers comply with agreements?",
76
+ # "answer": "We will have a monthly meeting for members"
77
+ # })
78
+ #
79
+ # qa_list.append({
80
+ # "question": "Can I be forced to join a union?",
81
+ # "answer": "What kind of questions is that! Of course no!"
82
+ # })
83
+ #
84
+ # qa_list.append({
85
+ # "question": "What happens if I disagree with the union’s decisions?",
86
+ # "answer": "We will agree to disagree"
87
+ # })
88
+
89
+ for qna in qa_list:
90
+ ques_str = qna["question"]
91
+ ans_str = qna["answer"]
92
+ n_prompt_list.append(f"""
93
+ <|im_start|>system\n{sys_str}<|im_end|>
94
+ <|im_start|>question\n{ques_str}<|im_end|>
95
+ <|im_start|>answer\n{ans_str}<|im_end|>
96
+ """
97
+ )
98
+
99
+ n_prompt_str = "\n"
100
+
101
+ for prompt in n_prompt_list:
102
+ n_prompt_str = n_prompt_str + prompt + "\n"
103
+
104
+ total_prompt=f"""
105
+ {n_prompt_str}
106
+
107
+ <|im_start|>system\n{sys_str}<|im_end|>
108
+ <|im_start|>question
109
+ {input}\n<|im_end|>
110
+ <|im_start|>answer
111
+ """
112
+
113
+
114
+ print("***total_prompt:")
115
+ print(total_prompt)
116
+ response = get_completion(total_prompt)
117
+ #gen_text = response["predictions"][0]["generated_text"]
118
+ #return json.dumps(extract_json(gen_text, 3))
119
+
120
+ ###gen_text = response["choices"][0]["text"]
121
+
122
+ #return gen_text
123
+
124
+ ###return json.dumps(extract_json(gen_text, -1))
125
+ return response
126
+
127
+ #return json.dumps(response)
128
+
129
+ #iface = gr.Interface(fn=greet, inputs="text", outputs="text")
130
+ #iface.launch()
131
+
132
+ #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
133
+ #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="json")
134
+ iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="text")
135
+ iface.queue(api_open=True);
136
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ openai
2
+ python-dotenv
3
+ predibase