import numpy as np import pandas as pd import requests import os import gradio as gr import json from dotenv import load_dotenv, find_dotenv _ = load_dotenv(find_dotenv()) from predibase import Predibase, FinetuningConfig, DeploymentConfig # Get a KEY from https://app.predibase.com/ api_token = os.getenv('PREDIBASE_API_KEY') pb = Predibase(api_token=api_token) adapter_id = 'tour-assistant-model/14' lorax_client = pb.deployments.client("solar-1-mini-chat-240612") def extract_json(gen_text, n_shot_learning=0): if(n_shot_learning == -1) : start_index = 0 else : start_index = gen_text.index("### Response:\n{") + 14 if(n_shot_learning > 0) : for i in range(0, n_shot_learning): gen_text = gen_text[start_index:] start_index = gen_text.index("### Response:\n{") + 14 end_index = gen_text.find("}\n\n### ") + 1 return gen_text[start_index:end_index] def get_completion(prompt): return lorax_client.generate(prompt, adapter_id=adapter_id, max_new_tokens=1000).generated_text def greet(input): sys_str = "You are a helpful support assistant. Answer the following question." qa_list = [] n_prompt_list = [] qa_list.append({ "question": "What are the benefits of joining a union?", "answer": "Collective bargaining of salary." }) qa_list.append({ "question": "How much are union dues, and what do they cover?", "answer": "The union dues for our union is 3%." }) qa_list.append({ "question": "How does the union handle grievances and disputes?", "answer": "There will be a panel to oversee disputes" }) qa_list.append({ "question": "Will joining a union affect my job security?", "answer": "No." }) qa_list.append({ "question": "What is the process for joining a union?", "answer": "Please use the contact form." }) qa_list.append({ "question": "How do unions negotiate contracts with employers?", "answer": "Our dear leader will handle the negotiations." }) qa_list.append({ "question": "What role do I play as a union member?", "answer": "You will be invited to our monthly picnics" }) qa_list.append({ "question": "How do unions ensure that employers comply with agreements?", "answer": "We will have a monthly meeting for members" }) qa_list.append({ "question": "Can I be forced to join a union?", "answer": "What kind of questions is that! Of course no!" }) qa_list.append({ "question": "What happens if I disagree with the union’s decisions?", "answer": "We will agree to disagree" }) for qna in qa_list: ques_str = qna["question"] ans_str = qna["answer"] n_prompt_list.append(f""" <|im_start|>system\n{sys_str}<|im_end|> <|im_start|>question\n{ques_str}<|im_end|> <|im_start|>answer\n{ans_str}<|im_end|> """ ) n_prompt_str = "\n" for prompt in n_prompt_list: n_prompt_str = n_prompt_str + prompt + "\n" total_prompt=f""" {n_prompt_str} <|im_start|>system\n{sys_str}<|im_end|> <|im_start|>question {input}\n<|im_end|> <|im_start|>answer """ print("***total_prompt:") print(total_prompt) response = get_completion(total_prompt) #gen_text = response["predictions"][0]["generated_text"] #return json.dumps(extract_json(gen_text, 3)) ###gen_text = response["choices"][0]["text"] #return gen_text ###return json.dumps(extract_json(gen_text, -1)) return response #return json.dumps(response) #iface = gr.Interface(fn=greet, inputs="text", outputs="text") #iface.launch() #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"]) #iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="json") iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="text") iface.launch()