seoultechimpact / app.py
debisoft's picture
i
da64073
raw
history blame
4.34 kB
import numpy as np
import pandas as pd
import requests
import os
import gradio as gr
import json
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())
from predibase import Predibase, FinetuningConfig, DeploymentConfig
# Get a KEY from https://app.predibase.com/
api_token = os.getenv('PREDIBASE_API_KEY')
pb = Predibase(api_token=api_token)
adapter_id = 'tour-assistant-model/14'
lorax_client = pb.deployments.client("solar-1-mini-chat-240612")
def extract_json(gen_text, n_shot_learning=0):
if(n_shot_learning == -1) :
start_index = 0
else :
start_index = gen_text.index("### Response:\n{") + 14
if(n_shot_learning > 0) :
for i in range(0, n_shot_learning):
gen_text = gen_text[start_index:]
start_index = gen_text.index("### Response:\n{") + 14
end_index = gen_text.find("}\n\n### ") + 1
return gen_text[start_index:end_index]
def get_completion(prompt):
return lorax_client.generate(prompt, adapter_id=adapter_id, max_new_tokens=1000).generated_text
def greet(input):
sys_str = "You are a helpful support assistant. Answer the following question."
qa_list = []
n_prompt_list = []
qa_list.append({
"question": "What are the benefits of joining a union?",
"answer": "Collective bargaining of salary."
})
qa_list.append({
"question": "How much are union dues, and what do they cover?",
"answer": "The union dues for our union is 3%."
})
qa_list.append({
"question": "How does the union handle grievances and disputes?",
"answer": "There will be a panel to oversee disputes"
})
qa_list.append({
"question": "Will joining a union affect my job security?",
"answer": "No."
})
qa_list.append({
"question": "What is the process for joining a union?",
"answer": "Please use the contact form."
})
qa_list.append({
"question": "How do unions negotiate contracts with employers?",
"answer": "Our dear leader will handle the negotiations."
})
qa_list.append({
"question": "What role do I play as a union member?",
"answer": "You will be invited to our monthly picnics"
})
qa_list.append({
"question": "How do unions ensure that employers comply with agreements?",
"answer": "We will have a monthly meeting for members"
})
qa_list.append({
"question": "Can I be forced to join a union?",
"answer": "What kind of questions is that! Of course no!"
})
qa_list.append({
"question": "What happens if I disagree with the union’s decisions?",
"answer": "We will agree to disagree"
})
for qna in qa_list:
ques_str = qna["question"]
ans_str = qna["answer"]
n_prompt_list.append(f"""
<|im_start|>system\n{sys_str}<|im_end|>
<|im_start|>question\n{ques_str}<|im_end|>
<|im_start|>answer\n{ans_str}<|im_end|>
"""
)
n_prompt_str = "\n"
for prompt in n_prompt_list:
n_prompt_str = n_prompt_str + prompt + "\n"
total_prompt=f"""
{n_prompt_str}
<|im_start|>system\n{sys_str}<|im_end|>
<|im_start|>question
{input}\n<|im_end|>
<|im_start|>answer
"""
print("***total_prompt:")
print(total_prompt)
response = get_completion(total_prompt)
#gen_text = response["predictions"][0]["generated_text"]
#return json.dumps(extract_json(gen_text, 3))
###gen_text = response["choices"][0]["text"]
#return gen_text
###return json.dumps(extract_json(gen_text, -1))
return response
#return json.dumps(response)
#iface = gr.Interface(fn=greet, inputs="text", outputs="text")
#iface.launch()
#iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Text to find entities", lines=2)], outputs=[gr.HighlightedText(label="Text with entities")], title="NER with dslim/bert-base-NER", description="Find entities using the `dslim/bert-base-NER` model under the hood!", allow_flagging="never", examples=["My name is Andrew and I live in California", "My name is Poli and work at HuggingFace"])
#iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="json")
iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label="Question", lines=3)], outputs="text")
iface.queue(api_open=True);
iface.launch()