dbleek commited on
Commit
0d69c11
·
1 Parent(s): 71ee167

delete unnecessary files

Browse files
Files changed (3) hide show
  1. .gitignore +0 -2
  2. milestone_2_app.py +0 -26
  3. milestone_3_app.py +0 -72
.gitignore DELETED
@@ -1,2 +0,0 @@
1
-
2
- *patent_classification(2).pt
 
 
 
milestone_2_app.py DELETED
@@ -1,26 +0,0 @@
1
- import streamlit as st
2
- from transformers import (AutoTokenizer, TFAutoModelForSequenceClassification,
3
- pipeline)
4
-
5
- st.title("CS-GY-6613 Project Milestone 2")
6
- model_choices = (
7
- "distilbert-base-uncased-finetuned-sst-2-english",
8
- "j-hartmann/emotion-english-distilroberta-base",
9
- "joeddav/distilbert-base-uncased-go-emotions-student",
10
- )
11
-
12
- with st.form("Input Form"):
13
- text = st.text_area("Write your text here:", "CS-GY-6613 is a great course!")
14
- model_name = st.selectbox("Select a model:", model_choices)
15
- submitted = st.form_submit_button("Submit")
16
-
17
- if submitted:
18
- model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
19
- tokenizer = AutoTokenizer.from_pretrained(model_name)
20
- classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
21
- res = classifier(text)
22
- label = res[0]["label"].upper()
23
- score = res[0]["score"]
24
- st.markdown(
25
- f"This text was classified as **{label}** with a confidence score of **{score}**."
26
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
milestone_3_app.py DELETED
@@ -1,72 +0,0 @@
1
- import streamlit as st
2
- import torch
3
- from datasets import load_dataset
4
- from transformers import AutoTokenizer
5
- from transformers import AutoModelForSequenceClassification
6
- from transformers import pipeline
7
-
8
- # Load HUPD dataset
9
- dataset_dict = load_dataset('HUPD/hupd',
10
- name='sample',
11
- data_files="https://huggingface.co/datasets/HUPD/hupd/blob/main/hupd_metadata_2022-02-22.feather",
12
- icpr_label=None,
13
- train_filing_start_date='2016-01-01',
14
- train_filing_end_date='2016-01-21',
15
- val_filing_start_date='2016-01-22',
16
- val_filing_end_date='2016-01-31',
17
- )
18
-
19
- # Process data
20
- filtered_dataset = dataset_dict['validation'].filter(lambda e: e['decision'] == 'ACCEPTED' or e['decision'] == 'REJECTED')
21
- dataset = filtered_dataset.shuffle(seed=42).select(range(20))
22
- dataset = dataset.sort("patent_number")
23
-
24
-
25
- # Create pipeline using model trainned on Colab
26
- model = torch.load("/workspaces/cs-gy-6613-project/patent_classification(1).pt", map_location=torch.device('cpu'))
27
- tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
28
- classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
29
-
30
-
31
-
32
- def load_patent():
33
- selected_application = dataset.select([applications[st.session_state.id]])
34
- st.session_state.abstract = selected_application['abstract'][0]
35
- st.session_state.claims = selected_application['claims'][0]
36
- st.session_state.title = selected_application['title'][0]
37
-
38
-
39
-
40
- st.title("CS-GY-6613 Project Milestone 3")
41
-
42
- # List patent numbers for select box
43
- applications = {}
44
- for ds_index, example in enumerate(dataset):
45
- applications.update({example['patent_number']: ds_index })
46
- st.selectbox("Select a patent application:", applications, on_change=load_patent, key="id")
47
-
48
- # Application title displayed for additional context only, not used with model
49
- st.text_area("Title", key="title", value=dataset[0]['title'], height=50)
50
-
51
- # Classifier input form
52
- with st.form('Input Form'):
53
- abstract = st.text_area("Abstract", key="abstract", value=dataset[0]['abstract'], height=200)
54
- claims = st.text_area("Claims", key="claims", value=dataset[0]['abstract'], height=200)
55
- submitted = st.form_submit_button("Get Patentability Score")
56
-
57
- if submitted:
58
- selected_application = dataset.select([applications[st.session_state.id]])
59
- res = classifier(abstract, claims)
60
- if res[0]["label"] == 'LABEL_0':
61
- pred = "ACCEPTED"
62
- elif res[0]["label"] == 'LABEL_1':
63
- pred = "REJECTED"
64
- score = res[0]["score"]
65
- label = selected_application['decision'][0]
66
- result = st.markdown("This text was classified as **{}** with a confidence score of **{}**.".format(pred, score))
67
- check = st.markdown("Actual Label: **{}**.".format(label))
68
-
69
-
70
-
71
-
72
-