davidmeikle's picture
Update app.py
7e0e946 verified
import spaces
import gradio as gr
import torch
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
import os
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
device = "cuda:0" if torch.cuda.is_available() else "cpu"
auth_token = os.environ.get("AUTH_TOKEN")
auth_username = os.environ.get("AUTH_USERNAME")
auth_password = os.environ.get("AUTH_PASSWORD")
repo_id = "davidmeikle/german_parler_tts_mini_v0.1-alpha2"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, token=auth_token).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id, token=auth_token)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id, token=auth_token)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "Eigene lage, wenn er Sullas absichten richtig beurteilte, eine so bedrohte, daß dergleichen Rücksichten kaum mehr in betracht kamen"
default_description = "A male voice speaks in a monotone voice with a slightly slow delivery in a quiet room with barely any echo."
examples = [
[
"Eigene lage, wenn er Sullas absichten richtig beurteilte, eine so bedrohte, daß dergleichen Rücksichten kaum mehr in betracht kamen",
"A male voice speaks in a monotone voice with a slightly slow delivery in a quiet room with barely any echo.",
None,
],
[
"Die menschliche Stimme ist vor allem ein Musikinstrument.",
"A male voice speaks in a monotone voice with a slightly slow delivery in a quiet room with barely any echo.",
None,
],
]
number_normalizer = EnglishNumberNormalizer()
def preprocess(text):
text = number_normalizer(text).strip()
text = text.replace("-", " ")
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".","")
print(chunk)
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
@spaces.GPU
def gen_tts(text, description):
inputs = tokenizer(description.strip(), return_tensors="pt").to(device)
prompt = tokenizer(preprocess(text), return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(
input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0
)
audio_arr = generation.cpu().numpy().squeeze()
return SAMPLE_RATE, audio_arr
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
German Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p>This model is a version of <strong><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> Mini V1</strong> trained for the German language.</p>
<p>The model has five voices to choose from: Ana (female), Brenda (female), Christof (male), Elena (female), and Hans (male)</p>
<p>Due to limitations on the volume of recordings in the dataset, this model may underperform for female voices at present.</p>
<p>By default, Parler-TTS generates random voice characteristics. To ensure speaker consistency across generations, aim to use consistent descriptions in your prompts.</p>
<p><b>Please Note:</b> this model has not been trained to work in English, it will generate incoherent output. </p>
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
inputs = [input_text, description]
outputs = [audio_out]
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
gr.HTML(
"""
<p>Tips for ensuring good generation:
<ul>
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>
"""
)
block.queue()
block.launch(share=True, auth=(auth_username, auth_password))