File size: 3,502 Bytes
2251a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr

MODEL_NAME = "openai/whisper-small"
BATCH_SIZE = 8

device = 0 if torch.cuda.is_available() else "cpu"

pipe = pipeline(
    task="automatic-speech-recognition",
    model=MODEL_NAME,
    chunk_length_s=30,
    device=device,
)


# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
    if seconds is not None:
        milliseconds = round(seconds * 1000.0)

        hours = milliseconds // 3_600_000
        milliseconds -= hours * 3_600_000

        minutes = milliseconds // 60_000
        milliseconds -= minutes * 60_000

        seconds = milliseconds // 1_000
        milliseconds -= seconds * 1_000

        hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else ""
        return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
    else:
        # we have a malformed timestamp so just return it as is
        return seconds


def transcribe(file, task, return_timestamps):
    outputs = pipe(file, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=return_timestamps)
    text = outputs["text"]
    if return_timestamps:
        timestamps = outputs["chunks"]
        timestamps = [
            f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}"
            for chunk in timestamps
        ]
        text = "\n".join(str(feature) for feature in timestamps)
    return text


demo = gr.Blocks()

mic_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="microphone", type="filepath", optional=True),
        gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
        gr.inputs.Checkbox(default=False, label="Return timestamps"),
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="Whisper Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

file_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.inputs.Audio(source="upload", optional=True, label="Audio file", type="filepath"),
        gr.inputs.Radio(["transcribe", "translate"], label="Task", default="transcribe"),
        gr.inputs.Checkbox(default=False, label="Return timestamps"),
    ],
    outputs="text",
    layout="horizontal",
    theme="huggingface",
    title="Whisper Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    examples=[
        ["./example.flac", "transcribe", False],
        ["./example.flac", "transcribe", True],
    ],
    cache_examples=True,
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"])

demo.launch(enable_queue=True)