Spaces:
Runtime error
Runtime error
### -------------------------------- ### | |
### libraries ### | |
### -------------------------------- ### | |
import gradio as gr | |
import numpy as np | |
import os | |
from tensorflow.keras.models import load_model | |
### -------------------------------- ### | |
### model loading ### | |
### -------------------------------- ### | |
model = load_model('model.h5') # single file model from colab | |
## --------------------------------- ### | |
### reading: categories.txt ### | |
### -------------------------------- ### | |
labels = ['please upload categories.txt' for i in range(10)] # placeholder | |
if os.path.isfile("categories.txt"): | |
# open categories.txt in read mode | |
categories = open("categories.txt", "r") | |
labels = categories.readline().split() | |
## --------------------------------- ### | |
### rendering: info.html ### | |
### -------------------------------- ### | |
# borrow file reading functionality from reader.py | |
# info = | |
description = "A Hugging Space demo created by datasith" | |
title = "Cast parts: Deffective or Okay?" | |
# css = \ | |
# ''' | |
# .div { | |
# border: 2px solid black; | |
# margin: 10px; | |
# padding: 5%; | |
# } | |
# ul { | |
# display: inline-block; | |
# text-align: left; | |
# } | |
# img { | |
# display: block; | |
# margin: auto; | |
# } | |
# .description { | |
# text-align: center; | |
# } | |
# ''' | |
article = \ | |
''' | |
Deffective or Okay? Demo app including a binary classification model for casted parts | |
This is a test project to get familiar with Hugging Face! | |
The space includes the necessary files for everything to run smoothly on HF's `Spaces`: | |
- `app.py` | |
- `reader.py` | |
- `requirements.txt` | |
- `model.h5` (TensorFlow/Keras) | |
- `categories.txt` | |
- `info.txt` | |
The data used to train the model is available as [Kaggle dataset](https://www.kaggle.com/datasets/ravirajsinh45/real-life-industrial-dataset-of-casting-product). | |
The space was inspired by @Isabel's wonderful [cat or pug](https://huggingface.co/spaces/isabel/pug-or-cat-image-classifier) one. Enjoy!d | |
''' | |
### -------------------------------- ### | |
### interface creation ### | |
### -------------------------------- ### | |
samples = ['defective.jpeg', 'okay.jpeg'] | |
def preprocess(image): | |
image = np.array(image) / 255 | |
image = np.expand_dims(image, axis=0) | |
return image | |
def predict_image(image): | |
pred = model.predict(preprocess(image)) | |
results = {} | |
for row in pred: | |
for idx, item in enumerate(row): | |
results[labels[idx]] = float(item) | |
return results | |
# generate img input and text label output | |
image = gr.inputs.Image(shape=(300, 300), label="Upload Your Image Here") | |
label = gr.outputs.Label(num_top_classes=len(labels)) | |
# generate and launch interface | |
interface = gr.Interface(fn=predict_image, inputs=image, outputs=label, article=article, theme='default', title=title, allow_flagging='never', description=description, examples=samples) | |
interface.launch() |